PROBLEM SET 1 (DUE ON SEP 21)

(All Exercises are references to Introduction to Commutative Algebra by M. Atiyah and I. Macdonald.)
Problem 1. Exercise 2.20 (extension of scalars preserves flatness - note this exercise is in the middle of the chapter, not at the end like most of them)
Problem 2. Chapter 2, Exercise 6 (polynomials with coefficients in a module)
Problem 3. Observe that $A / I \otimes_{A} A / I \cong A / I$ for any ideal $I \subseteq A$ and $S^{-1} A \otimes_{A} S^{-1} A \cong$ $S^{-1} A$ for any mult. closed $S \subseteq A$. (Think about these two facts if they aren't immediately clear!) Give an example of a ring A and a module M such that $M \otimes_{A} M \cong M$, but where M is not isomorphic to either of the preceding examples (as A-modules). In other words, if you choose $A=\mathbb{Z}$ then you must give an example of a \mathbb{Z}-module M that satisfies $M \otimes_{\mathbb{Z}} M \cong M$ but is not isomorphic to \mathbb{Z} / I or $S^{-1} \mathbb{Z}$ for any I or S.
Problem 4. Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}^{2}$ as rings. (Hint: try to find two different ring homomorphisms $f, g: \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow \mathbb{C}$, then check whether $(f, g): \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow \mathbb{C}^{2}$ is an isomorphism.)
Problem 5. Chapter 3, Exercise 3 (composition of localizations)
Problem 6. Let A be a ring. An element $x \in A$ is called a zero-divisor if there exists $y \in A$ with $y \neq 0$ and $x y=0$. Let $S_{0} \subset A$ be the set of non-zero-divisors. Prove that every element of $S_{0}^{-1} A$ is either a unit or a zero-divisor. (Note: this is part of Chapter 3, Exercise 9. The ring $S_{0}^{-1} A$ is called the total ring of fractions of A.)
Problem 7. Let A be a ring. Show that any localization $S^{-1} A$ of A is isomorphic to a subring of the total ring of fractions of A / I for some ideal I.

