FIRST ORDER DIFFERENTIAL EQUATIONS

1. A first order differential equation is an equation of the form
 \[F(x, y, y') = 0. \]
 A solution of the differential equation is a function \(y = y(x) \) that satisfies the equation. A differential equation has \textbf{infinitely many} solutions.

2. An equilibrium solution is a constant solution, i.e. a constant function \(y(x) = K \) that satisfies the equation.

3. An initial value problem consists of a differential equation and an initial condition \(y(x_0) = y_0 \). It has a \textbf{unique} solution, which has to be a function. For instance \(y = \pm \sqrt{x} \) cannot be the solution of an i.v.p.

A. Separable Equations

 \[\frac{dy}{dx} = f(x)g(y) \]

 1. Separate the variables: \(\frac{dy}{g(y)} = f(x)dx. \)

 2. Integrate both sides: \(\int \frac{dy}{g(y)} = \int f(x)dx \) and get \(G(y) = C + F(x) \).

 3. Solve for \(y \) (if possible).

 4. If it is an initial value problem, plug in the given values and solve for \(C \).

B. Linear equations

 \[\frac{dy}{dx} + P(x)y = Q(x) \]

 1. Write the equation in the above form.

 2. Compute the integrating factor \(I(x) = e^{\int P(x)dx} \).

 3. Multiply both sides of the equation by this integrating factor: \(I(x)\frac{dy}{dx} + I(x)\cdot P(x)y = I(x)\cdot Q(x) \).

 4. Integrate both sides and get \(I(x)y = C + \int I(x)Q(x)dx \).

 5. Solve for \(y \).

 6. If it is an initial value problem, plug in the given values and solve for \(C \).

C. Homogeneous Equations

 \[\frac{dy}{dx} = F\left(\frac{y}{x}\right) \]

 1. Make the substitution \(v = \frac{y}{x} \). \textbf{Attention:} \(\frac{dy}{dx} = x\cdot \frac{dv}{dx} + v. \)
2. Solve the new equation, not forgetting the constant involved. (It will probably be a separable equation.)
3. Find \(y(x) = xv(x)\).
4. If it is an initial value problem, make sure you find the constant.

D. Bernoulli Equations

\[
\frac{dy}{dx} + P(x)y = Q(x)y^n
\]

1. Make the substitution \(v = y^{1-n}\).
2. Solve the new linear equation: \(\frac{dv}{dx} + (1-n)P(x)y = (1-n)Q(x)\).
3. Find \(y(x)\).
4. If it is an initial value problem, make sure you find the constant.

E. Other Substitutions

Some equations need some other substitution to transform them in a known type. These substitutions vary greatly and there are no general formulas that can help. However, the more you practice, the better your intuition becomes in these matters.

F. Linear first order equations with sinusoidal input

\[
y' + ky = B\cos(\omega t) \text{ or } B\sin(\omega t)
\]

Such an equation can be seen as the real or imaginary part of the complex differential equation

\[
z' + kz = Be^{i\omega t}
\]

The general idea is that the solutions to (*) are of the form

\[y = y_p + y_h,\]

where \(y_p\) is a particular solution of the original equation (*), and \(y_h\) is the general solution to the associated homogeneous equation (see below).

1. Solve the corresponding homogeneous equation \(y' + ky = 0\). The solution is \(y_h = Ce^{-kt}\). This is where the arbitrary constant appears!
2. Find a particular solution \(z_p\) of (**). It will usually be of the same form as the input, namely \(Ae^{i\omega t}\). So try that and determine \(A\).
3. Write \(y_p\) by taking either the real or imaginary part of \(z_p\). If the input in (*) is cos, you should take the real part, if it is sin, the imaginary part.
4. Write down the general solution to (*), \(y = y_p + y_h\)
5. If it is an initial value problem, find the constant.