18.103 MIDTERM

PLEASE WRITE CLEARLY AND SHOW ALL YOUR WORK. CLEARLY LABEL WHICH QUESTION YOU ARE ANSWERING IN YOUR WRITE-UPS. PLEASE HAND IN THE WRITE UP SECTION AND WRITE YOUR NAME CLEARLY ON THE FIRST page.

1. Questions

(1) (a) Let g be a 2π periodic function that is Lebesgue square-integrable on the interval $[0,2 \pi]$, i.e, $g \in L^{2}([0,2 \pi])$. Let $\hat{g}(n)$ denote the Fourier coefficients of g. State Parseval's identity for g.
(b) Let $f \in C^{2}(\mathbb{R})$ be a 2π periodic function. Recall that $f \in C^{2}(\mathbb{R})$ means that f, f^{\prime}, and $f^{\prime \prime}$ are all continuous functions. Suppose that f^{\prime} satisfies

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}(x)\right|^{2} d x=1 \tag{1.1}
\end{equation*}
$$

Let $S_{N} f$ denote the N th partial Fourier sum of f. Prove that there exists a constant $C>0$ so that

$$
\left|S_{N} f(x)-f(x)\right| \leq C N^{-\frac{1}{2}}
$$

(2) Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. Given $E \subset \mathbb{R}^{d}$ measurable, let $\mu(E)$ denote the Lebesgue measure of E. Prove that

$$
\begin{equation*}
\mu\left(\left\{x \in \mathbb{R}^{d}| | f(x) \mid>\lambda\right\}\right) \leq \frac{1}{\lambda} \int_{\mathbb{R}^{d}}|f(x)| \mu(d x) \tag{1.2}
\end{equation*}
$$

(3) Let $f \in L^{1}(\mathbb{R})$. Define

$$
\begin{equation*}
F(x):=\int_{(-\infty, x]} f(y) d y \tag{1.3}
\end{equation*}
$$

Show that F is uniformly continuous on \mathbb{R}.
(4) In this problem we show that good decay of the Fourier coefficients of a 2π periodic function implies regularity (smoothness). Suppose that $f \in C^{0}(\mathbb{R})$ is 2π-periodic and the Fourier coefficients $\hat{f}(n)$ satisfy

$$
|\hat{f}(n)| \leq|n|^{-\frac{3}{2}}
$$

for all $n \neq 0$. Show that there exists a constant $C>0$ so that for all x, y,

$$
|f(x)-f(y)| \leq C|x-y|^{\frac{1}{2}}
$$

i.e., $f \in C^{\frac{1}{2}}(\mathbb{R})$.

Please write your name here:
2. Answers

