18.103 HOMEWORK \#2

DUE FRIDAY, SEPTEMBER 23RD AT 5PM IN $\mathbf{2 - 2 6 7}$

1. Reading and Practice

Read Chapter 2 of Stein and Shakarchi, Fourier Analysis.
2. Exercises to be handed in
(1) Do Exercises 6, 8, 10 in in Chapter 2 of Fourier Analysis by Stein and Shakarchi
(2) Recall that for each $N \in \mathbb{N}$ the Dirichlet kernel is defined by

$$
D_{N}(x):=\sum_{n=-N}^{N} e^{i n x}
$$

Prove the following:
(a)

$$
D_{N}(x)=\frac{\sin \left[\left(N+\frac{1}{2}\right) x\right]}{\sin x / 2}
$$

(b) There exists a constant $C>0$ (independent of N) so that

$$
\begin{equation*}
\left|D_{N}(x)\right| \leq C \min \left(N, \frac{1}{|x|}\right) \tag{2.1}
\end{equation*}
$$

(c) and in fact one can find constants $0<b<B$ (independent of N) so that

$$
\begin{equation*}
b \log (N) \leq \int_{-\pi}^{\pi}\left|D_{N}(x)\right| d x \leq B \log (N) \tag{2.2}
\end{equation*}
$$

(Hint: part (c) requires a few tricks. See Problem 2 in Chapter 2 of Fourier Analysis by Stein and Shakarchi for a step by step outline)
(3) This problem ties up a few loose ends from class on Friday in our proof that if f is periodic with period 1 , and $f \in C^{\alpha}([-1 / 2,1 / 2])$ with $\alpha \in(0,1)$ then we have $\left\|S_{N} f-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.

Let $f \in C^{\alpha}([-1 / 2,1 / 2])$ for $\alpha \in(0,1)$ be a 1 -periodic function, i.e., f is α-Hölder continuous on $[-1 / 2,1 / 2]$ and $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. Recall the definitions

$$
\begin{array}{r}
\|f\|_{\infty}:=\sup _{x \in[-1 / 2,1 / 2]}|f(x)| \\
\|f\|_{C^{\alpha}}:=\sup _{x, y \in[-1 / 2,1 / 2]} \frac{|f(x)-f(x-y)|}{|y|^{\alpha}}
\end{array}
$$

Define

$$
h_{x}(y)=\frac{f(x-y)-f(x)}{\sin \pi y}
$$

Fix $\delta>0$ with $0<\delta<1 / 2$. Show that
(a) There exists a constant $C>0$ so that

$$
\left|h_{x}(y)\right| \leq C \frac{\|f\|_{\infty}}{\delta}
$$

as long as $|y|>\delta$.
(b) Let $\tau>0$ so that $2 \tau<\delta<|y|$. Then there exists a constant $C>0$ so that

$$
\left|h_{x}(y)-h_{x}(y+\tau)\right| \leq C\left(\frac{|\tau|^{\alpha}\|f\|_{C^{\alpha}}}{\delta}+\frac{\|f\|_{\infty}}{\delta^{2}}|\tau|\right)
$$

