
18.103 MIDTERM REVIEW

MIDTERM WILL TAKE PLACE FRIDAY NOV 4TH IN CLASS

1. Reading

The final will cover there material from Chapters 2, 3, 5, 6 of Fourier Analysis
by Stein and Shakarchi, Chapters 1, 2 of Real Analysis by Stein and Shakarchi,
the material we covered in class from Chapter 3.1 and 3.2 from of Real Analysis.
And the material on Hilbert spaces and L2 from Chapter 4 and Chapter 5.1 of Real
Analysis that we covered in class.

2. HW Exercises to Review

Some of the questions on the Final may be drawn from your HW problems
including the recommended problems.

3. MIdterm Review

please review the material on the Midterm review as well.

4. additional practice problems

(1) The goal of this problem is to prove a version of Bernstein’s inequality for
2π periodic functions on the line.

Proposition 4.1 (Bernstein’s Lemma). Let f be a trigonometric polyno-

mial with f̂(k) = 0 for all |k| > n. Then, there exists an absolute constants
C1 > 0 and C2 > 0 so that

‖f ′‖L∞(S1) ≤ C1n‖f‖L∞(S1) (4.1)

and

‖f ′‖L1([0,2π]) ≤ C2n‖f‖L1([0,2π]) (4.2)

Outline of proof. For the L1 estimate in (4.2) use the following hint: Let
Kn denote the Fejer kernels and define

Vn(x) := (1 + e(nx) + e(−nx))Kn(x)

where we have used the notation e(nx) := einx. Vn is called de la Vallée
Poussin’s kernel. Show that

V̂n(j) = 1 ∀ |j| ≤ n

and

‖V ′n‖L1(S1) ≤ Cn

Next show that we can write f = Vn ∗ f and go from there. There is an
easier argument for the L∞ estimate in (4.1). �
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(2) In this problem we’ll prove a more general version of Bernstein’s inequality
on Rd than the L2 version we proved in class. However, we’ll have to
assume that we know the following inequality about convolutions called
Young’s inequality. You can take Young’s inequality for granted or look up
the proof. Recall the Lp(Rd) norm of a function f is defined by

‖f‖Lp(Rd) :=

(∫
Rd

|f(x)|p dx
) 1

p

Lemma 4.2 (Young’s inequality). Let 1 ≤ r, p, q ≤ ∞ so that

1 +
1

r
=

1

p
+

1

q

Then if f ∈ Lp(Rd) and g ∈ Lq(Rd) the convolution f ∗ g is defined for a.e.
x ∈ Rd and we have

‖f ∗ g‖Lr(Rd) ≤ ‖f‖Lp(Rd)‖g‖Lq(Rd)

Prove the following version of Bernstein’s inequality:

Proposition 4.3 (Bernstein’s inequality). Let f ∈ S(Rd) and suppose that

its Fourier transform f̂ is supported in the disc of radius R, i.e,

supp(f̂) ⊂ B(0, R) := {ξ ∈ Rd | |ξ| < R}
Then, there exists an absolute constant C > 0 so that for any 1 ≤ p ≤ r ≤
∞ we have

‖f‖Lr(Rd) ≤ CRd(
1
p−

1
r )‖f‖Lp(Rd)

(Hint: let φ ∈ S be such that φ̂(ξ) = 1 on B(0, 1). Set φ̂R−1(ξ) :=

φ̂(R−1ξ) and note that this is equal to 1 on B(0, R). Show that f = φR−1∗f .
Then use Young’s inequality. )

(3) Consider the Cauchy problem for the Schrödinger equation on Rd with
Schwartz data

i∂tψ + ∆ψ = 0

ψ(0, x) = f ∈ S(Rd)
(4.3)

Use the Fourier transform to show that a solution can be represented by
the formula

ψ(t, x) =

∫
Rd

e2πix·ξe−4itπ
2|ξ|2 f̂(ξ) dξ

Show that this solution conserves mass in the sense that

‖ψ(t, ·)‖L2(Rd) = ‖f‖L2(Rd) ∀t ∈ R

Show in addition that we can represent the solution by the formula,

ψ(t, x) = cdt
− d

2

∫
Rd

ei|x−y|
2/4tf(y) dy

Conclude that solutions decay like t−
d
2 in time, by showing the bound

‖ψ(t, ·)‖L∞(Rd) ≤ cdt−
d
2 ‖f‖L1

where above cd > 0 is a constant that depends only on the dimension d.
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(4) Let E ⊂ R be a measurable set with µ(E) = 1. Prove that that there exists
an open interval I ⊂ R so that

µ(E ∩ I) ≥ 9

10
µ(I)

Hint: recall that any finite measure subset of R can be well approximated
by a finite union of intervals. And any finite union of intervals can be
expressed as a disjoint finite union of intervals in a unique way.

(5) Suppose that f ∈ S(R) so that
∫
R |f |

2
= 1. Suppose in addition that f̂ is

supported in the interval [−1, 1], i.e., supp(f̂) ⊂ [−1, 1]. Prove that there
exists an absolute constant C > 0 so that

|f(x)− f(y)| ≤ C‖f‖L2 |x− y|
for all x, y ∈ R.

(6) Let f ∈ L1(R). Define g(x) via the convolution

g = f ∗ e−|x|
2

=

∫
R
f(y)e−|x−y|

2

dy

Prove that

lim
|x|→∞

g(x) = 0

(7) Read and study section 5.2.1 in Fourier Analysis on the time-dependent
heat equation on R.

(8) Prove that if {Kδ}δ>0 is an approximation to the identity in the sense of
Chapter 3.2 in Real Analysis, then

sup
δ>0
|Kδ ∗ f(x)| ≤ cf∗(x)

for some absolute constant c > 0. Above f∗(x) is the Hardy-Littlewood
maximal function defined by

f∗(x) := sup
B3x

1

µ(B)

∫
B

|f(y)| dy

where the supremum above is over all balls B containing the point x.


