I will describe certain surprising features of algebraic geometry that arise if one works exclusively with perfect rings of positive characteristic p; these features are strongly reminiscent of derived algebraic geometry. When combined with some higher algebraic K-theory, this will allow us to attach “determinants” to certain mildly non-linear objects. Time permitting, I will explain why these determinants are useful in constructing an object of interest in arithmetic geometry: an algebraic variety in characteristic p that parametrizes \mathbb{Z}_p-lattices in a finite dimensional \mathbb{Q}_p-vector space. This is joint work with Peter Scholze.