Given a fibration $f : X \to S$ of CW-complexes one can use Eilenberg obstruction theory to study the spaces of sections of f. These obstruction theory give rise to obstructions to the existence of a section lying in the groups $H^{s+1}(S, \pi_s(F))$ where F is the fibre of f. A topos is a generalization of the concept of topological space which is ubiquitous in algebraic geometry. In the talk I shall present joint work with I. Barnea generalizing Eilenberg obstruction theory for sections of maps of topoi $f : X \to S$. If time permits I will describe applications to Galois theory of number fields.