The 6-connected cover of Spin$(n)$, known as the group String$(n)$, has fascinating connections with both abstract homotopy theory (through String Bordism and TMF) and with quantum field theory (through the 2D SUSY non-linear sigma model). A better geometric understanding of String geometry has the potential to offer new interactions between these fields. Unfortunately all previous models of String$(n)$ are infinite dimensional, making a thorough geometric understanding elusive. In this talk we will construct a finite dimensional model of String$(n)$ as a higher categorical version of a group (known as a 2-group). In the process, we will "categorify" the classical notions of group cohomology and derived functor. In particular we will categorify Segal’s topological group cohomology, thereby obtaining a classification of extensions of topological 2-groups.