The Johnson filtration is finitely generated

Andrew Putman

University of Notre Dame

MIT Topology Seminar
Mapping class group

\[\text{The mapping class group } \text{Mod}_g \text{ is group of homotopy classes of orientation-preserving diffeomorphisms } f: \Sigma_g \rightarrow \Sigma_g. \]

Basic object in topology:
- Gluing data for 3-manifolds.
- Monodromies of \(\Sigma_g \)-bundles (e.g. families of algebraic curves).
- \(\pi_1 \) of moduli space of algebraic curves.
Mapping class group

\[\Sigma_g = \text{cpt oriented genus } g \text{ surface} \]
Mapping class group

\[\Sigma_g = \text{cpt oriented genus } g \text{ surface} \]

The mapping class group \(\text{Mod}_g \) is group of homotopy classes of orientation-preserving diffeomorphisms \(f : \Sigma_g \to \Sigma_g \).
Mapping class group

\[\Sigma_g = \text{cpt oriented genus } g \text{ surface} \]

The mapping class group \(\text{Mod}_g \) is group of homotopy classes of orientation-preserving diffeomorphisms \(f : \Sigma_g \to \Sigma_g \).

Basic object in topology:
Mapping class group

\[\Sigma_g = \text{cpt oriented genus } g \text{ surface} \]

The mapping class group \(\text{Mod}_g \) is group of homotopy classes of orientation-preserving diffeomorphisms \(f : \Sigma_g \to \Sigma_g \).

Basic object in topology:
- gluing data for 3-manifolds.
Mapping class group

\[\Sigma_g = \text{cpt oriented genus } g \text{ surface} \]

The mapping class group \(\text{Mod}_g \) is group of homotopy classes of orientation-preserving diffeomorphisms \(f : \Sigma_g \to \Sigma_g \).

Basic object in topology:

- gluing data for 3-manifolds.
- monodromies of \(\Sigma_g \)-bundles (e.g. families of alg. curves).
Mapping class group

\[\Sigma_g = \text{cpt oriented genus } g \text{ surface} \]

The mapping class group \(\text{Mod}_g \) is group of homotopy classes of orientation-preserving diffeomorphisms \(f : \Sigma_g \rightarrow \Sigma_g \).

Basic object in topology:
- gluing data for 3-manifolds.
- monodromies of \(\Sigma_g \)-bundles (e.g. families of alg. curves).
- \(\pi_1 \) of moduli space of algebraic curves.
Dehn twists
Dehn twists

\[x = \text{simple closed curve} \]
Dehn twists

$x = \text{simple closed curve}$

$T_x \in \text{Mod}_g = \text{cut, twist, reglue.}$
Dehn twists

$x = \text{simple closed curve}$

$T_x \in \text{Mod}_g = \text{cut, twist, reglue.}$

Theorem (Dehn)

Mod_g is gen by fin many Dehn twists.
Dehn twists

\[x = \text{simple closed curve} \]

\[T_x \in \text{Mod}_g = \text{cut, twist, reglue.} \]

Theorem (Dehn)

\[\text{Mod}_g \text{ is gen by fin many Dehn twists.} \]
Dehn twists

\(x = \text{simple closed curve} \)

\[T_x \in \text{Mod}_g = \text{cut, twist, reglue.} \]

Theorem (Dehn)

\(\text{Mod}_g \) is gen by fin many Dehn twists.

\(\text{Mod}_g \) has many other finiteness properties: finitely presentable (McCool, Hatcher–Thurston), all \(H_k \) finitely generated (Harer?), etc.
Torelli group
Torelli group

\[\text{Mod}_g \circlearrowleft H_1(\Sigma_g), \text{ preserves alg. isect. pairing.} \]
Torelli group

\(\text{Mod}_g \cap H_1(\Sigma_g) \), preserves alg. isect. pairing.

\[\leadsto \text{Mod}_g \rightarrow \text{Sp}_{2g}(\mathbb{Z}). \]
Torelli group

\[\text{Mod}_g \circ H_1(\Sigma_g), \text{ preserves alg. isect. pairing.} \]

\[\rightsquigarrow \text{Mod}_g \rightarrow \text{Sp}_{2g}(\mathbb{Z}). \]

Torelli group \(\mathcal{I}_g \) is kernel: mapping classes acting trivially on \(H_1(\Sigma_g) \).
Torelli group

\(\text{Mod}_g \cap H_1(\Sigma_g) \), preserves alg. isect. pairing.

\(\sim \text{Mod}_g \rightarrow \text{Sp}_{2g}(\mathbb{Z}). \)

Torelli group \(\mathcal{I}_g \) is kernel: mapping classes acting trivially on \(H_1(\Sigma_g) \).

\[
1 \longrightarrow \mathcal{I}_g \longrightarrow \text{Mod}_g \longrightarrow \text{Sp}_{2g}(\mathbb{Z}) \longrightarrow 1
\]
Examples of elts of Torelli

\[I_g = \ker(\text{Mod} g \mapsto H_1(\Sigma_g)) \]

Action of Dehn twist \(T_x \) on \(H_1(\Sigma_g) \) determined by \([x] \in H_1(\Sigma_g)\).

Separating twists: \(T_x \) with \([x] = 0\), i.e. \(x \) separating.

Bounding pair: \(T_x T_{-1} y \) with \(x \cap y = \emptyset \) and \([x] = [y]\), i.e. \(x \cup y \) bounds.

Theorem (Birman, Powell): \(I_g \) is generated by separating twists and bounding pairs.
Examples of elts of Torelli

\[\mathcal{I}_g = \ker(\text{Mod}_g \circ H_1(\Sigma_g)) \]
Examples of elts of Torelli

\[\mathcal{I}_g = \ker(\text{Mod}_g \circ H_1(\Sigma_g)) \]

Action of Dehn twist \(T_x \) on \(H_1(\Sigma_g) \) determined by \([x] \in H_1(\Sigma_g)\).
Examples of elts of Torelli

\[\mathcal{I}_g = \ker(\text{Mod}_g \cap H_1(\Sigma_g)) \]

Action of Dehn twist \(T_x \) on \(H_1(\Sigma_g) \) determined by \([x] \in H_1(\Sigma_g) \).

Separating twists: \(T_x \) w/ \([x] = 0 \), i.e. \(x \) separating.

![Diagram of separating twists]
Examples of elts of Torelli

\(\mathcal{I}_g = \ker(\text{Mod}_g \circ H_1(\Sigma_g)) \)

Action of Dehn twist \(T_x \) on \(H_1(\Sigma_g) \) determined by \([x] \in H_1(\Sigma_g)\).

Separating twists: \(T_x \) w/ \([x] = 0\), i.e. \(x \) separating.

Bounding pair: \(T_x T_y^{-1} \) w/ \(x \cap y = \emptyset \) and \([x] = [y]\), i.e. \(x \cup y \) bounds.
Examples of elts of Torelli

$I_g = \ker(\text{Mod}_g \circ H_1(\Sigma_g))$

Action of Dehn twist T_x on $H_1(\Sigma_g)$ determined by $[x] \in H_1(\Sigma_g)$.

Separating twists: T_x w/ $[x] = 0$, i.e. x separating.

Bounding pair: $T_x T_y^{-1}$ w/ $x \cap y = \emptyset$ and $[x] = [y]$, i.e. $x \cup y$ bounds.

Theorem (Birman, Powell)

I_g is gen. by sep twists and bounding pairs.
Finiteness properties of Torelli

Theorem (Classical)
$I_1 = 1$, so $\text{Mod}_1 \sim = \text{SL}_2(\mathbb{Z})$.

Theorem (Mess)
I_2 is an ∞-rank free group.

Theorem (Johnson)
I_g is fin gen for $g \geq 3$.

Open question
Is I_g fin pres?
Finiteness properties of Torelli

Theorem (Classical)
\[\mathcal{I}_1 = 1, \text{ so } \text{Mod}_1 \cong \text{SL}_2(\mathbb{Z}). \]
Finiteness properties of Torelli

Theorem (Classical)
\[\mathcal{I}_1 = 1, \text{ so } \text{Mod}_1 \cong \text{SL}_2(\mathbb{Z}). \]

Theorem (Mess)
\[\mathcal{I}_2 \text{ an } \infty\text{-rank free group.} \]
Finiteness properties of Torelli

Theorem (Classical)
\(\mathcal{I}_1 = 1, \) so \(\text{Mod}_1 \cong \text{SL}_2(\mathbb{Z}) \).

Theorem (Mess)
\(\mathcal{I}_2 \) an \(\infty \)-rank free group.

Theorem (Johnson)
\(\mathcal{I}_g \) is fin gen for \(g \geq 3 \).
Finiteness properties of Torelli

Theorem (Classical)
$I_1 = 1$, so $\text{Mod}_1 \cong \text{SL}_2(\mathbb{Z})$.

Theorem (Mess)
I_2 an ∞-rank free group.

Theorem (Johnson)
I_g is fin gen for $g \geq 3$.

Open question
Is I_g fin pres?
Theorem (Johnson)

For \(g \geq 3 \), following are same subgroup \(K^g \) of \(I^g \):

- \(K^g = \ker(I^g \to H^1(I^g)/\text{torsion}) \)
- \(K^g \) subgroup of \(I^g \) gen. by sep twists.
- \(K^g \) is \(f \in I^g \) s.t. map. torus \(M_f \) has same cup products as \(\Sigma^g \times S^1 \).

Remark

For all \(f \in I^g \), \(M_f \) has homology of \(\Sigma^g \times S^1 \).

Observation

\(K^g = \ker(I^g \to H^1(I^g)/\text{torsion}) \) \(\Rightarrow \) \(K^g \) is commensurable with \([I^g, I^g] \).

\(\Rightarrow \) \(K^g \) has same finiteness properties as \([I^g, I^g] \).
Theorem (Johnson)

For $g \geq 3$, following are same subgroup K_g of I_g (Johnson kernel):

- K_g subgroup of I_g gen. by sep twists.
- K_g is $f \in I_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Remark
For all $f \in I_g$, M_f has homology of $\Sigma_g \times S^1$.

Observation
$K_g = \ker(I_g \to H_1(I_g)/\text{torsion}) \Rightarrow K_g$ is commensurable with $[I_g, I_g]$.
$\Rightarrow K_g$ has same finiteness properties as $[I_g, I_g]$.

Theorem (Johnson)

For $g \geq 3$, following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

$\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/\text{torsion})$.

Remark

For all $f \in \mathcal{I}_g$, M_f has homology of $\Sigma_g \times S^1$.

Observation

$\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/\text{torsion}) \Rightarrow \mathcal{K}_g$ is commensurable with $[\mathcal{I}_g, \mathcal{I}_g]$.

$\Rightarrow \mathcal{K}_g$ has same finiteness properties as $[\mathcal{I}_g, \mathcal{I}_g]$.

Johnson kernel

Theorem (Johnson)

For $g \geq 3$, following are same subgroup \mathcal{K}_g of I_g (Johnson kernel):

- $\mathcal{K}_g = \ker(I_g \to H_1(I_g)/\text{torsion})$.
- \mathcal{K}_g subgroup of I_g gen. by sep twists.

Remark

For all $f \in I_g$, M_f has homology of $\Sigma_g \times S^1$.

Observation

$\mathcal{K}_g = \ker(I_g \to H_1(I_g)/\text{torsion}) \Rightarrow \mathcal{K}_g$ is commensurable with $[I_g, I_g]$.

$\Rightarrow \mathcal{K}_g$ has same finiteness properties as $[I_g, I_g]$.
Johnson kernel

Theorem (Johnson)

For \(g \geq 3 \), following are same subgroup \(\mathcal{K}_g \) of \(\mathcal{I}_g \) (Johnson kernel):

- \(\mathcal{K}_g = \ker(\mathcal{I}_g \rightarrow H_1(\mathcal{I}_g)/\text{torsion}) \).
- \(\mathcal{K}_g \) subgroup of \(\mathcal{I}_g \) gen. by sep twists.
- \(\mathcal{K}_g \) is \(f \in \mathcal{I}_g \) s.t. map. torus \(M_f \) has same cup products as \(\Sigma_g \times S^1 \).
Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):
- $\mathcal{K}_g = \ker(\mathcal{I}_g \rightarrow H_1(\mathcal{I}_g)/\text{torsion})$.
- \mathcal{K}_g subgroup of \mathcal{I}_g gen. by sep twists.
- \mathcal{K}_g is $f \in \mathcal{I}_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Remark
For all $f \in \mathcal{I}_g$, M_f has homology of $\Sigma_g \times S^1$.
Johnson kernel

Theorem (Johnson)

For $g \geq 3$, following are same subgroup K_g of I_g (Johnson kernel):

- $K_g = \ker(I_g \to H_1(I_g)/\text{torsion})$.
- K_g subgroup of I_g gen. by sep twists.
- K_g is $f \in I_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Remark

For all $f \in I_g$, M_f has homology of $\Sigma_g \times S^1$.

Observation

$K_g = \ker(I_g \to H_1(I_g)/\text{torsion}) \Rightarrow K_g$ is commensurable with $[I_g, I_g]$.
Johnson kernel

Theorem (Johnson)

For \(g \geq 3 \), following are same subgroup \(\mathcal{K}_g \) of \(\mathcal{I}_g \) (Johnson kernel):

- \(\mathcal{K}_g = \ker(\mathcal{I}_g \rightarrow H_1(\mathcal{I}_g)/\text{torsion}) \).
- \(\mathcal{K}_g \) subgroup of \(\mathcal{I}_g \) gen. by sep twists.
- \(\mathcal{K}_g \) is \(f \in \mathcal{I}_g \) s.t. map. torus \(M_f \) has same cup products as \(\Sigma_g \times S^1 \).

Remark

For all \(f \in \mathcal{I}_g \), \(M_f \) has homology of \(\Sigma_g \times S^1 \).

Observation

\(\mathcal{K}_g = \ker(\mathcal{I}_g \rightarrow H_1(\mathcal{I}_g)/\text{torsion}) \) \(\Rightarrow \) \(\mathcal{K}_g \) is commensurable with \([\mathcal{I}_g, \mathcal{I}_g] \).
\(\Rightarrow \) \(\mathcal{K}_g \) has same finiteness properties as \([\mathcal{I}_g, \mathcal{I}_g] \).
Lower central series of Torelli
Lower central series of Torelli

The lower central series of a group G is

$$\gamma_1(G) = G \quad \text{and} \quad \gamma_{k+1}(G) = [\gamma_k(G), G].$$
Lower central series of Torelli

The lower central series of a group G is

$$\gamma_1(G) = G \quad \text{and} \quad \gamma_{k+1}(G) = [\gamma_k(G), G].$$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$
Lower central series of Torelli

The lower central series of a group G is

$$
\gamma_1(G) = G \quad \text{and} \quad \gamma_{k+1}(G) = [\gamma_k(G), G].
$$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

I_g is residually nilpotent:
Lower central series of Torelli

The lower central series of a group G is

$$\gamma_1(G) = G \quad \text{and} \quad \gamma_{k+1}(G) = [\gamma_k(G), G].$$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

\mathcal{I}_g is residually nilpotent:

$$\bigcap_{k=1}^{\infty} \gamma_k(\mathcal{I}_g) = 1.$$
Lower central series of Torelli

The lower central series of a group G is

$$\gamma_1(G) = G \quad \text{and} \quad \gamma_{k+1}(G) = [\gamma_k(G), G].$$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

I_g is residually nilpotent:

$$\bigcap_{k=1}^{\infty} \gamma_k(I_g) = 1.$$

Each $\gamma_{k+1}(I_g)$ is infinite-index normal subgroup of $\gamma_k(I_g)$ with $\gamma_k(I_g)/\gamma_{k+1}(I_g)$ fin gen abelian group.
Lower central series of Torelli

The lower central series of a group G is

$$
\gamma_1(G) = G \quad \text{and} \quad \gamma_{k+1}(G) = [\gamma_k(G), G].
$$

$$
G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots
$$

I_g is residually nilpotent:

$$
\bigcap_{k=1}^{\infty} \gamma_k(I_g) = 1.
$$

Each $\gamma_{k+1}(I_g)$ is infinite-index normal subgroup of $\gamma_k(I_g)$ with $\gamma_k(I_g)/\gamma_{k+1}(I_g)$ fin gen abelian group.

\Rightarrow naively, expects finiteness of $\gamma_k(I_g)$ to get worse as $k \uparrow \infty$.
Deeper finiteness properties

Theorem (Dimca–Papadima, 2007)
$H_1([I_g, I_g]; Q)$ is fin. dim. for $g \geq 4$.

Theorem (Ershov–He, 2017)
$[I_g, I_g]$ is fin. gen. for $g \geq 12$.

Theorem (Church–Ershov–P, 2017)
$\gamma_k([I_g])$ is fin. gen. for $g \geq \max(2k - 1, 4)$.

Goal for rest of talk
Prove that $[I_g, I_g]$ (and hence Johnson kernel) is fin gen. for $g \geq 4$.
Deeper finiteness properties

Theorem (Dimca–Papadima, 2007)
$H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q})$ is fin. dim. for $g \geq 4$.

Theorem (Ershov–He, 2017)
$[\mathcal{I}_g, \mathcal{I}_g]$ is fin. gen. for $g \geq 12$.

Theorem (Church–Ershov–P, 2017)
$\gamma_k([\mathcal{I}_g])$ is fin. gen. for $g \geq \max(2^k - 1, 4)$.

Goal for rest of talk
Prove that $[\mathcal{I}_g, \mathcal{I}_g]$ (and hence Johnson kernel) is fin gen. for $g \geq 4$.
Deeper finiteness properties

Theorem (Dimca–Papadima, 2007)
\[H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q}) \text{ is fin. dim. for } g \geq 4. \]

Theorem (Ershov–He, 2017)
\[[\mathcal{I}_g, \mathcal{I}_g] \text{ is fin. gen. for } g \geq 12. \]
Deeper finiteness properties

Theorem (Dimca–Papadima, 2007)
$H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q})$ is fin. dim. for $g \geq 4$.

Theorem (Ershov–He, 2017)
$[\mathcal{I}_g, \mathcal{I}_g]$ is fin. gen. for $g \geq 12$.

Theorem (Church–Ershov–P, 2017)
$\gamma_k(\mathcal{I}_g)$ is fin. gen. for $g \geq \max(2k - 1, 4)$

Goal for rest of talk
Prove that $[\mathcal{I}_g, \mathcal{I}_g]$ (and hence Johnson kernel) is fin gen. for $g \geq 4$.
Deeper finiteness properties

Theorem (Dimca–Papadima, 2007)
\[H_1([I_g, I_g]; \mathbb{Q}) \text{ is fin. dim. for } g \geq 4. \]

Theorem (Ershov–He, 2017)
\[[I_g, I_g] \text{ is fin. gen. for } g \geq 12. \]

Theorem (Church–Ershov–P, 2017)
\[\gamma_k(I_g) \text{ is fin. gen. for } g \geq \max(2k - 1, 4) \]

Goal for rest of talk
Prove that \([I_g, I_g]\) (and hence Johnson kernel) is fin gen. for \(g \geq 4 \).
Bieri–Neumann–Strebel (BNS) invariants

The BNS invariant $\Sigma(G) \subset G^*$ is the set of all $f \in G^*$ such that

$$\{ g \in G | f(g) \geq 0 \}$$

is a connected subgraph of the Cayley graph $\text{Cay}(G, S)$. Nonobvious fact: independent of genset S.
Bieri–Neumann–Strebel (BNS) invariants

G grp w/ fin genset S.

Characters:

$G^* = \text{Hom}(G, \mathbb{R})$.

Definition

The BNS invariant $\Sigma(G) \subset G^*$ is set of all $f \in G^*$ s.t. $
\{ g \in G | f(g) \geq 0 \}$ is connected subgraph of $\text{Cay}(G, S)$.

Nonobvious fact: independent of genset S.

Bieri–Neumann-Strebel (BNS) invariants

G grp w/ fin genset S.

Cayley graph: $\text{Cay}(G, S) =$ vertices G, edges $g \cdot gs$ for $g \in G$, $s \in S$.

Character \star $G^\star = \text{Hom}(G, \mathbb{R})$.

Definition: The BNS invariant $\Sigma(G)$ $\subset G^\star$ is set of all $f \in G^\star$ s.t. $\{ g \in G | f(g) \geq 0 \}$ is connected subgraph of $\text{Cay}(G, S)$.

Nonobvious fact: independent of genset S.

Bieri–Neumann-Strebel (BNS) invariants

\(G \) grp w/ fin genset \(S \).

Cayley graph: \(\text{Cay}(G, S) = \) vertices \(G \), edges \(g–gs \) for \(g \in G, s \in S \).

Characters: \(G^* = \text{Hom}(G, \mathbb{R}) \).
Bieri–Neumann-Strebel (BNS) invariants

\[G \text{ grp w/ fin genset } S. \]

Cayley graph: \(\text{Cay}(G, S) = \text{vertices } G, \text{ edges } g \cdot gs \text{ for } g \in G, s \in S. \)

Characters: \(G^* = \text{Hom}(G, \mathbb{R}). \)

Definition

The BNS invariant \(\Sigma(G) \subset G^* \) is set of all \(f \in G^* \) s.t.
\[\{ g \in G \mid f(g) \geq 0 \} \text{ is connected subgraph of Cay}(G, S). \]
Bieri–Neumann-Strebel (BNS) invariants

G grp w/ fin genset S.

Cayley graph: $\text{Cay}(G, S) = $ vertices G, edges $g\cdot gs$ for $g \in G$, $s \in S$.

Characters: $G^* = \text{Hom}(G, \mathbb{R})$.

Definition
The BNS invariant $\Sigma(G) \subset G^*$ is set of all $f \in G^*$ s.t.
$\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\text{Cay}(G, S)$.

Nonobvious fact: independent of genset S.
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
$\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(\mathbb{Z}^n) = (\mathbb{Z}^n)^*$
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
$\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(\mathbb{Z}^n) = (\mathbb{Z}^n)^*$
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
\[\{ g \in G \mid f(g) \geq 0 \} \]
is connected subgraph of $\text{Cay}(G, S)$.

Example: $\Sigma(\mathbb{Z}^n) = (\mathbb{Z}^n)^*$

Consider nonzero $f \in (\mathbb{Z}^n)^*$.
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\text{Cay}(G, S)$.

Example: $\Sigma(\mathbb{Z}^n) = (\mathbb{Z}^n)^*$

Consider nonzero $f \in (\mathbb{Z}^n)^*$. $f(x) \geq 0$ is a halfspace.
Definition

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
\[\{ g \in G \mid f(g) \geq 0 \} \text{ is connected subgraph of Cay}(G, S). \]

Example: $\Sigma(\mathbb{Z}^n) = (\mathbb{Z}^n)^*$

Consider nonzero $f \in (\mathbb{Z}^n)^*$.
$f(x) \geq 0$ is a halfspace.
Definition

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\text{Cay}(G, S)$.

Example: $\Sigma(F_2) = 0$
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$
Definition

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
$\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

$F_2 = \langle a, b \rangle$
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
$\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

$F_2 = \langle a, b \rangle$
Consider $f : F_2 \to \mathbb{R}$, $f(a) = 1$ and $f(b) = 0$.
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t.
$\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\text{Cay}(G, S)$.

Example: $\Sigma(F_2) = 0$

$F_2 = \langle a, b \rangle$

Consider $f : F_2 \rightarrow \mathbb{R}$, $f(a) = 1$ and $f(b) = 0.$
Definition
The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

$F_2 = \langle a, b \rangle$
Consider $f : F_2 \rightarrow \mathbb{R}, f(a) = 1$ and $f(b) = 0.$
BNS Properties

Basic facts:
▶ Cone on open subset of sphere.
▶ For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
\[G \text{ fin gen grp}, \quad H < G \text{ w/ } [G, G] \subset H \subset G. \]

\[H \text{ is fin gen } \iff \{ f \in G^* | f|_H = 0 \} \subset \Sigma(G). \]

Previous examples reflect that all \(0 \subset H \subset \mathbb{Z}_n \) are fin gen, but no \([F_n, F_n] \subset H \subset F_n \) are fin gen except \(H \) finite-index in \(F_n \).

Special Case \([G, G] \) is fin gen iff \(\Sigma(G) = G^* \).
BNS Properties

Basic facts:

\[\begin{align*}
\text{Cone on open subset of sphere.} \\
\text{For 3-manifold group, is cone on interiors of fibered faces.}
\end{align*} \]

Fundamental Theorem (Bieri–Neumann-Strebel)

\[\text{G fin gen grp, } H < G \text{ w/ } [G, G] \subset H \subset G. \]

\[H \text{ is fin gen } \iff \{ f \in G^* | f|_H = 0 \} \subset \Sigma(G). \]

Previous examples reflect that all \(0 \subset H \subset \mathbb{Z}_n \) are fin gen, but no \([F_n, F_n] \subset H \subset F_n\) are fin gen except \(H \) finite-index in \(F_n \).

Special Case

\[[G, G] \text{ is fin gen iff } \Sigma(G) = G^*. \]
BNS Properties

Basic facts:

- Cone on open subset of sphere.
BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.
BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann–Strebel)

\(G \) fin gen grp, \(H \triangleleft G \) w/ \([G, G] \subset H \subset G \).
BNS Properties

Basic facts:
- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)

G fin gen grp, $H < G$ w/ $[G, G] \subset H \subset G$.

\[H \text{ is fin gen} \iff \{ f \in G^* \mid f|_H = 0 \} \subset \Sigma(G). \]
BNS Properties

Basic facts:
- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)

\[G \text{ fin gen grp, } H < G \text{ w/ } [G, G] \subset H \subset G. \]

\[H \text{ is fin gen } \iff \{ f \in G^* \mid f|_H = 0 \} \subset \Sigma(G). \]

Previous examples reflect that all \(0 \subset H \subset \mathbb{Z}^n \) are fin gen, but no \([F_n, F_n] \subset H \subset F_n \) are fin gen except \(H \) finite-index in \(F_n \).
BNS Properties

Basic facts:
- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)

Given a finitely generated group G and a subgroup H of G such that $[G, G] \subset H \subset G$,

$$ H \text{ is fin gen } \iff \{ f \in G^* \mid f|_H = 0 \} \subset \Sigma(G). $$

Previous examples reflect that all $0 \subset H \subset \mathbb{Z}^n$ are fin gen, but no $[F_n, F_n] \subset H \subset F_n$ are fin gen except H finite-index in F_n.

Special Case

$[G, G]$ is fin gen iff $\Sigma(G) = G^*$.
Main goal
Main goal

Goal

\([\mathcal{I}_g, \mathcal{I}_g]\) is fin gen for \(g \geq 4\)
Main goal

Goal

$[I_g, I_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(I_g) = (I_g)^*$.
Main goal

Goal
$[\mathcal{I}_g, \mathcal{I}_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*$.

Step 1: Find large piece of BNS invariant
Exists fin gen set $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).$$
Step 1: Find large piece of BNS invariant

Exists fin gen set $S \subset I_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (I_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(I_g).$$
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (I_g)^* | f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma (I_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when $[s, s'] = 1$ connected. Then

$$\{ f \in G^* | f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma (G).$$
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when $[s, s'] = 1$ connected. Then

$$\{ f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(G).$$

Lemma

For $g \geq 4$, graph w/ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.
\[
\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).
\]

Lemma (Folklore)
G grp w/ fin gen set S. Assume graph w/ vertices S and edge between $s, s' \in S$ when $[s, s'] = 1$ connected. Then
\[
\{ f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(G).
\]

Lemma
For $g \geq 4$, graph w/ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.
Step 1: Find large piece of BNS invariant

Exists fin genset $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when $[s, s'] = 1$ connected. Then

$$\{ f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(G).$$

Lemma

For $g \geq 4$, graph w/ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

Take S finite subgraph containing genset for \mathcal{I}_g.
Main goal

Goal
\([\mathcal{I}_g, \mathcal{I}_g]\) is fin gen for \(g \geq 4\), i.e. \(\Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*\).

Step 1: Find large piece of BNS invariant
Exists fin gen set \(S \subset \mathcal{I}_g\) of genus 1 bounding pairs s.t.

\[\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g). \]
Main goal

Goal
$[I_g, I_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(I_g) = (I_g)^*$.

Step 1: Find large piece of BNS invariant
Exists fin gen set $S \subset I_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (I_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(I_g).$$

$\text{Mod}_g \trianglelefteq I_g$ by conjugation
Main goal

Goal
$[\mathcal{I}_g, \mathcal{I}_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*$.

Step 1: Find large piece of BNS invariant
Exists fin gen set $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).$$

$\text{Mod}_g \circ \mathcal{I}_g$ by conjugation $\sim \rightarrow$ $\text{Mod}_g \circ (\mathcal{I}_g)^*$ preserving $\Sigma(\mathcal{I}_g)$.

Main goal

Goal
$[\mathcal{I}_g, \mathcal{I}_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*$.

Step 1: Find large piece of BNS invariant
Exists fin gen set $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).$$

$\text{Mod}_g \circlearrowright \mathcal{I}_g$ by conjugation \leadsto $\text{Mod}_g \circlearrowright (\mathcal{I}_g)^*$ preserving $\Sigma(\mathcal{I}_g)$.

Step 2: Push everything into that piece of BNS
For nonzero $f \in (\mathcal{I}_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.
Main goal

Goal
$[I_g, I_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(I_g) = (I_g)^{*}$.

Step 1: Find large piece of BNS invariant
Exists fin gen set $S \subset I_g$ of genus 1 bounding pairs s.t.

$$\{f \in (I_g)^{*} \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(I_g).$$

Mod$_g \circ I_g$ by conjugation \rightsquigarrow Mod$_g \circ (I_g)^{*}$ preserving $\Sigma(I_g)$.

Step 2: Push everything into that piece of BNS
For nonzero $f \in (I_g)^{*}$, exists $\phi \in$ Mod$_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

$$\implies \phi \cdot f \in \Sigma(I_g)$$
Main goal

Goal
$[\mathcal{I}_g, \mathcal{I}_g]$ is fin gen for $g \geq 4$, i.e. $\Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*$.

Step 1: Find large piece of BNS invariant
Exists fin gen set $S \subset \mathcal{I}_g$ of genus 1 bounding pairs s.t.

$$\{ f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S \} \subset \Sigma(\mathcal{I}_g).$$

$\text{Mod}_g \circ \mathcal{I}_g$ by conjugation \implies $\text{Mod}_g \circ (\mathcal{I}_g)^*$ preserving $\Sigma(\mathcal{I}_g)$.

Step 2: Push everything into that piece of BNS
For nonzero $f \in (\mathcal{I}_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

$$\implies \phi \cdot f \in \Sigma(\mathcal{I}_g) \implies f \in \Sigma(\mathcal{I}_g)$$
Step 2: Push everything into that piece of BNS
For nonzero $f \in (I_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.
Step 2: Push everything into that piece of BNS
For nonzero $f \in (I_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Give Mod_g pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut} ((I_g)^*) \cong \text{GL}_n(\mathbb{R}).$$
Step 2: Push everything into that piece of BNS
For nonzero $f \in (\mathcal{I}_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Give Mod_g pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut} ((\mathcal{I}_g)^*) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1 (proved next slide)
Mod_g is irreducible space (not finite union of proper closed subspaces).
Step 2: Push everything into that piece of BNS
For nonzero $f \in (I_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $\phi \cdot f(s) \neq 0$ for all $s \in S$.

Give Mod_g pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut}((I_g)^*) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1 (proved next slide)
Mod_g is irreducible space (not finite union of proper closed subspaces).

For $s \in S$, set $Z_s = \{\phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0\}$ (a closed set!).
Step 2: Push everything into that piece of BNS
For nonzero \(f \in (I_g)^* \), exists \(\phi \in \text{Mod}_g \) s.t. \((\phi \cdot f)(s) \neq 0 \) for all \(s \in S \).

Give \(\text{Mod}_g \) pullback of Zariski topology under
\[
\text{Mod}_g \to \text{Aut} ((I_g)^*) \cong \text{GL}_n(\mathbb{R}).
\]

Claim 1 (proved next slide)
\(\text{Mod}_g \) is irreducible space (not finite union of proper closed subspaces).

For \(s \in S \), set \(Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \} \) (a closed set!).

Claim 2 (proved slide after that)
\(Z_s \) proper subspace of \(\text{Mod}_g \).
Step 2: Push everything into that piece of BNS
For nonzero $f \in (\mathcal{I}_g)^*$, exists $\phi \in \text{Mod}_g$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Give Mod_g pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut}((\mathcal{I}_g)^*) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1 (proved next slide)

Mod_g is irreducible space (not finite union of proper closed subspaces).

For $s \in S$, set $Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \}$ (a closed set!).

Claim 2 (proved slide after that)

Z_s proper subspace of Mod_g.

$$\implies \bigcup_{s \in S} Z_s \subsetneq \text{Mod}_g$$
Step 2: Push everything into that piece of BNS
For nonzero \(f \in (\mathcal{I}_g)^* \), exists \(\phi \in \text{Mod}_g \) s.t. \((\phi \cdot f)(s) \neq 0 \) for all \(s \in S \).

Give \(\text{Mod}_g \) pullback of Zariski topology under
\[
\text{Mod}_g \to \text{Aut } ((\mathcal{I}_g)^*) \cong \text{GL}_n(\mathbb{R}).
\]

Claim 1 (proved next slide)
\(\text{Mod}_g \) is irreducible space (not finite union of proper closed subspaces).

For \(s \in S \), set \(Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \} \) (a closed set!).

Claim 2 (proved slide after that)
\(Z_s \) proper subspace of \(\text{Mod}_g \).

\[
\implies \bigcup_{s \in S} Z_s \subsetneq \text{Mod}_g
\]

Desired \(\phi \) is any elt of \(\text{Mod}_g \) not in this union.
Mod$_g$ has pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut}((\mathcal{I}_g)^*) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1

Mod$_g$ irreducible space (not finite union of proper closed subspaces).
Mod$_g$ has pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut} \left((\mathcal{I}_g)^* \right) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1

Mod$_g$ irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For $g \geq 3$, $H_1(\mathcal{I}_g; \mathbb{R}) \cong (\wedge^3 H)/H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.
Mod$_g$ has pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut} \left((\mathcal{I}_g)^* \right) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1

Mod$_g$ irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For $g \geq 3$, $H_1(\mathcal{I}_g; \mathbb{R}) \cong (\wedge^3 H)/H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.

\Rightarrow Have factorization

$$\text{Mod}_g \to \text{Sp}_{2g}(\mathbb{R}) \hookrightarrow \text{Aut} \left((\mathcal{I}_g)^* \right).$$
Mod$_g$ has pullback of Zariski topology under

$$\text{Mod}_g \rightarrow \text{Aut} \left((\mathcal{I}_g)^* \right) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1

Mod$_g$ irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For $g \geq 3$, $H_1(\mathcal{I}_g; \mathbb{R}) \cong (\wedge^3 H) / H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.

\Rightarrow Have factorization

$$\text{Mod}_g \rightarrow \text{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \text{Sp}_{2g}(\mathbb{R}) \hookrightarrow \text{Aut} \left((\mathcal{I}_g)^* \right).$$
Mod\(_g\) has pullback of Zariski topology under

\[\text{Mod}_g \rightarrow \text{Aut}\left((I_g)^*\right) \cong \text{GL}_n(\mathbb{R}). \]

Claim 1

Mod\(_g\) irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For \(g \geq 3 \), \(H_1(I_g; \mathbb{R}) \cong (\wedge^3 H)/H \) w/ \(H = H_1(\Sigma_g; \mathbb{R}) \).

⇒ Have factorization

\[\text{Mod}_g \rightarrow \text{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \text{Sp}_{2g}(\mathbb{R}) \hookrightarrow \text{Aut}\left((I_g)^*\right). \]

Induced topology on \(\text{Sp}_{2g}(\mathbb{R}) \) is usual Zariski topology.
Mod$_g$ has pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut } ((I_g)^*) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1

Mod$_g$ irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For $g \geq 3$, $H_1(I_g; \mathbb{R}) \cong (\wedge^3 H)/H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.

\Rightarrow Have factorization

$$\text{Mod}_g \rightarrow \text{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \text{Sp}_{2g}(\mathbb{R}) \hookrightarrow \text{Aut } ((I_g)^*).$$

Induced topology on $\text{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology.

$\text{Sp}_{2g}(\mathbb{R})$ connected alg. group, so $\text{Sp}_{2g}(\mathbb{R})$ irreducible.
Mod$_g$ has pullback of Zariski topology under

$$\text{Mod}_g \to \text{Aut} \left((\mathcal{I}_g)^* \right) \cong \text{GL}_n(\mathbb{R}).$$

Claim 1

Mod$_g$ irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For $g \geq 3$, $H_1(\mathcal{I}_g; \mathbb{R}) \cong (\wedge^3 H)/H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.

\Rightarrow Have factorization

$$\text{Mod}_g \twoheadrightarrow \text{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \text{Sp}_{2g}(\mathbb{R}) \hookrightarrow \text{Aut} \left((\mathcal{I}_g)^* \right).$$

Induced topology on $\text{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology.

$\text{Sp}_{2g}(\mathbb{R})$ connected alg. group, so $\text{Sp}_{2g}(\mathbb{R})$ irreducible.

$\text{Sp}_{2g}(\mathbb{Z})$ Zariski dense in $\text{Sp}_{2g}(\mathbb{R})$, so $\text{Sp}_{2g}(\mathbb{Z})$ irreducible.
Mod$_g$ has pullback of Zariski topology under
\[\text{Mod}_g \rightarrow \text{Aut} \left((\mathcal{I}_g)^* \right) \cong \text{GL}_n(\mathbb{R}). \]

Claim 1
Mod$_g$ irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)
For $g \geq 3$, $H_1(\mathcal{I}_g; \mathbb{R}) \cong (\wedge^3 H)/H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.

\Rightarrow Have factorization
\[\text{Mod}_g \twoheadrightarrow \text{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \text{Sp}_{2g}(\mathbb{R}) \hookrightarrow \text{Aut} \left((\mathcal{I}_g)^* \right). \]

Induced topology on $\text{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology.
$\text{Sp}_{2g}(\mathbb{R})$ connected alg. group, so $\text{Sp}_{2g}(\mathbb{R})$ irreducible.
$\text{Sp}_{2g}(\mathbb{Z})$ Zariski dense in $\text{Sp}_{2g}(\mathbb{R})$, so $\text{Sp}_{2g}(\mathbb{Z})$ irreducible.

Mod$_g \twoheadrightarrow \text{Sp}_{2g}(\mathbb{Z})$ surjective, so Mod$_g$ irreducible.
For $s \in S$, set $Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \}$.

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g.

For $s \in S$, set $Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \}$.

Claim 2: Push everything into that piece of BNS

Z_s proper subspace of Mod_g.

Assume $Z_s = \text{Mod}_g$. Write $s = T_x T_y^{-1}$.

For $s \in S$, set $Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \}$.

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g.

Assume $Z_s = \text{Mod}_g$. Write $s = T_x T_y^{-1}$.

![Diagram](image)
For \(s \in S \), set \(Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \} \).

Claim 2: Push everything into that piece of BNS \(Z_s \) proper subspace of \(\text{Mod}_g \).

Assume \(Z_s = \text{Mod}_g \). Write \(s = T_x T_y^{-1} \).

For \(\phi \in \text{Mod}_g \),
For $s \in S$, set $Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \}$.

Claim 2: Push everything into that piece of BNS

Z_s proper subspace of Mod_g.

Assume $Z_s = \text{Mod}_g$. Write $s = T_x T_y^{-1}$.

![Diagram of genus 1 bounding pairs](image)

For $\phi \in \text{Mod}_g$,

$$0 = (\phi \cdot f)(T_x T_y^{-1})$$
For \(s \in S \), set \(Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \} \).

Claim 2: Push everything into that piece of BNS \(Z_s \) proper subspace of \(\text{Mod}_g \).

Assume \(Z_s = \text{Mod}_g \). Write \(s = T_x T_y^{-1} \).

For \(\phi \in \text{Mod}_g \),

\[
0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1})
\]
For $s \in S$, set $Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \}$.

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g.

Assume $Z_s = \text{Mod}_g$. Write $s = T_x T_y^{-1}$.

For $\phi \in \text{Mod}_g$,

$$0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1}) = f(T_{\phi(x)} T_{\phi(y)}^{-1}).$$
For \(s \in S \), set \(Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \} \).

Claim 2: Push everything into that piece of BNS

\(Z_s \) proper subspace of \(\text{Mod}_g \).

Assume \(Z_s = \text{Mod}_g \). Write \(s = T_x T_y^{-1} \).

For \(\phi \in \text{Mod}_g \),

\[
0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1}) = f(T_{\phi(x)} T_{\phi(y)}^{-1}).
\]

All genus 1 bounding pairs of form \(T_{\phi(x)} T_{\phi(y)}^{-1} \) for some \(\phi \in \text{Mod}_g \).
For \(s \in S \), set \(Z_s = \{ \phi \in \text{Mod}_g \mid (\phi \cdot f)(s) = 0 \} \).

Claim 2: Push everything into that piece of BNS

\(Z_s \) proper subspace of \(\text{Mod}_g \).

Assume \(Z_s = \text{Mod}_g \). Write \(s = T_x T_y^{-1} \).

For \(\phi \in \text{Mod}_g \),

\[
0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1}) = f(T_{\phi(x)} T_{\phi(y)}^{-1}).
\]

All genus 1 bounding pairs of form \(T_{\phi(x)} T_{\phi(y)}^{-1} \) for some \(\phi \in \text{Mod}_g \).

These generate \(\mathcal{I}_g \), so \(f = 0 \), contradiction.