Operads with Homological Stability detect Infinite Loop Spaces

Maria Basterra
University of New Hampshire

MIT Topology Seminar
March 19, 2018
joint with Irina Bobkova, Kate Ponto, Ulrike Tillmann
and Sarah Yeakel

Figure: Sarah, Kate and Ulrike (WIT II- BIRS 2016)
Introduction: Operads and infinite loop spaces.

Tillmann’s surface operad: Surprise Theorem.

OHS: Operads with homological stability.

Main Theorem: Group completions of algebras over OHS are infinite loop spaces.

Proof sketch.

Examples and applications
Operads: Useful way to collect multiple input operations and encode their interactions for varying \(n \).

\[\mu_n : A^n \rightarrow A \]

In particular, useful to encode relations *up to homotopy* between operations.

Example: For a based topological space \((X, x_0)\), concatenation of loops defines operations on

\[\Omega(X) = \text{maps}(((0,1], \partial), (X, x_0)) = \text{loops space on } (X, x_0) \]

that have inverses and are associative up to homotopy.
Example: For a based topological space \((X, x_0)\), and \(n \geq 2\) we obtain operations on

\[
\Omega^n(X) = \text{maps}(([0,1]^n, \partial), (X, x_0)) = \Omega(\Omega(\cdots \Omega(X, x_0))) = n\text{-th loop space on } (X, x_0)
\]

that have inverses, are associative and commutative up to homotopy. And, coherent homotopies of homotopies increasing with higher \(n\).
Definition
An \textbf{operad} is a collection of spaces

\[\mathcal{O} = \{ \mathcal{O}(n) \}_{n \geq 0} \]

with base point \(\ast \in \mathcal{O}(0) \), \(1 \in \mathcal{O}(1) \), a right action of the symmetric group \(\Sigma_n \) on \(\mathcal{O}(n) \) and structure maps

\[\gamma : \mathcal{O}(k) \times [\mathcal{O}(j_1) \times \ldots \times \mathcal{O}(j_k)] \to \mathcal{O}(j_1 + \ldots + j_k) \]

that are required to be associative, unital, and equivariant.

A \textbf{map of operads} \(\mathcal{O} \to \mathcal{V} \) is a a collection of \(\Sigma_n \) equivariant maps \(\mathcal{O}(n) \to \mathcal{V}(n) \) which commute with the structure maps and preserve \(\ast \) and 1.

\textbf{Remark:} Note that above we do not insist that \(\mathcal{O}(0) = \ast \).
Definition
An \(O \)-algebra is a based space \((X, \ast)\) with equivariant structure maps
\[O(j) \times X^j \longrightarrow X. \]
For a based space \((X, \ast)\), the free \(O \)-algebra on \(X \) is
\[O(X) := \bigsqcup_{n \geq 0} (O(n) \times \Sigma_n X^n) / \sim \]
where \(\sim \) is a base point relation generated by
\[(\gamma(c; 1^i, \ast, 1^{n-i-1}); x_1, \ldots, x_{n-1}) \sim (c; x_1, \ldots x_i, \ast, x_{i+1}, \ldots, x_{n-1}) \].

The class of \((1, \ast) \in O(1) \times X\) is the base point of \(O(X) \). Note that it coincides with the class of \(\ast \in O(0) \).

Remark: We will identify \(O(0) \) with \(O(\ast) \). In the cases of interest it will be a non-trivial \(O \)-algebra.
Example: The little n-disks operad C_n.

$$C_n(k) \subset \text{Emb}(\bigsqcup_k D^n, D^n) \simeq \text{Conf}_k(\mathbb{R}^n)$$

Figure: From Wikipidea

$$\gamma : C_2(3) \times [C_2(2) \times C_2(3) \times C_2(4)] \longrightarrow C_2(9)$$
Introduction: Operads

We have maps of operads:

$$C_1 \rightarrow C_2 \rightarrow \cdots \rightarrow C_n \rightarrow \cdots \rightarrow C_\infty$$

Example: $\Omega^n(X)$ is a C_n-algebra.

Recognition Principle (Stasheff, Boardman-Vogt, May, Barrett-Eccless, Milgram ... (1970’s):
Connected C_n-algebras are Ω^n. More generally, the group completion of a C_n-algebra is an Ω^n space.
Tillmann’s surface operad \mathcal{M}

(Motivated by Segal’s cobordism category and definition of CFT)

Let $\Gamma_{g,n+1} = \pi_0(Diff^+(F_{g,n+1}; \partial))$ the mapping class group of an oriented surface of genus g and $n+1$ boundary components.

$$\mathcal{M}(n) \simeq \bigsqcup_{g \geq 0} B\Gamma_{g,n+1}$$

A version of the little 2-disk operad is a sub-operad of \mathcal{M} so that a grouplike \mathcal{M}-algebra is in particular a double loop space. But the surprising part is that

Theorem (Tillmann, 2000)

Group like \mathcal{M}-algebras are infinite-loop spaces with an infinite loop space action by $\mathcal{M}^+ (= the\ group\ completion\ of\ the\ free \ \mathcal{M}$-algebra\ on\ a\ point).
Tillmann’s surface operad theorem

Main ingredient on the proof: Harer’s homology stability theorem: $H_*B\Gamma_{g,n+1}$ is independent of g and n for g large enough.

Inconvenient feature of the proof: Requires strict multiplication: some surfaces had to be identified and diffeomorphisms are replaced by mapping class groups.
Lemma (May (GILS))

For a monad \mathcal{T}, a \mathcal{T}-functor F and a \mathcal{T}-algebra X, define

$$B_\bullet(F, \mathcal{T}, X) := \{ q \mapsto F(\mathcal{T}^q X) \}$$

1. For any functor G, $|B_\bullet(GF, \mathcal{T}, X)| \simeq |GB_\bullet(F, \mathcal{T}, X)|$.
2. $|B_\bullet(\mathcal{T}, \mathcal{T}, X)| \simeq X$.
3. $|B_\bullet(F, \mathcal{T}, \mathcal{T}(X))| \simeq F(X)$.
4. If $\delta : \mathcal{T} \rightarrow \mathcal{T}'$ is a natural transformation of monads, then \mathcal{T}' is an \mathcal{T}-functor and $B_\bullet(\mathcal{T}', \mathcal{T}, X)$ is a simplicial \mathcal{T}'-algebra.
Corollary

Let \mathcal{A} be an A_∞-operad and let $\delta: \mathcal{A} \rightarrow \mathcal{A}s$ be the map of monads associated to the augmentation of operads $\mathcal{A} \rightarrow \mathcal{A}s$. For an \mathcal{A}-algebra X, there is a topological monoid $M_{\mathcal{A}}(X) := |B_\bullet(\mathcal{A}s, \mathcal{A}, X)|$ and a strong deformation retract

$$\rho: X \rightarrow M_{\mathcal{A}}(X)$$

that is natural in X and induces an isomorphism of homology Pontryagin rings.
Group Completion

Algebraic monoids: $M \rightarrow \mathcal{G}M$ the Grothendieck group of M.

Topological monoids: $M \rightarrow \mathcal{G}M = \Omega BM$ where $BM = |N \cdot M|$

A_∞ algebras: $X \rightarrow \mathcal{G}X = \Omega BM_A(X)$ the composite

$$X \rightarrow M_A(X) \rightarrow \Omega BM_A(X)$$

Theorem (Quillen, McDuff-Segal)

Let $M = \bigsqcup_{n\geq 0} M_n$ be a topological monoid such that the multiplication on $H_*(M)$ is commutative. Then

$$H_*(\Omega BM) = \mathbb{Z} \times \lim_{n \rightarrow \infty} H_*(M_n) = \mathbb{Z} \times H_*(M_\infty).$$
Definition
Let I be a commutative, finitely generated monoid. An I-grading on an operad O is a decomposition

$$O(n) = \bigsqcup_{g \in I} O_g(n)$$

for each n so that:

1. the basepoint $*$ lies in $O_0(0)$;
2. the Σ_n action on $O(n)$ restricts to an action on each $O_g(n)$;
3. the structure maps restrict to maps

$$\gamma : O_g(k) \times [O_{g_1}(j_1) \times \ldots \times O_{g_k}(j_k)] \longrightarrow O_{g+g_1+\ldots+g_k}(j_1+\ldots+j_k).$$
For an I-graded operad O let s be the product of a set of generators for I, and choose a **propagator** $\tilde{s} \in O_s(1)$. Let $D = \gamma(-; *, \cdots, *)$ and $\bar{s} := \gamma(\tilde{s}, -)$. The diagram

\[
\begin{array}{ccc}
O_g(n) & \xrightarrow{\tilde{s}} & O_{g+s}(n) \\
D \downarrow & & \downarrow D \\
O_g(0) & \xrightarrow{\bar{s}} & O_{g+s}(0)
\end{array}
\]

commutes and defines a map $D_\infty : O_\infty(n) \longrightarrow O_\infty(0)$ where

\[O_\infty(n) =: \hocolim_{\tilde{s}} O_g(n)\]
Definition

An operad O is an **operad with homological stability (OHS)** if

1. it is I-graded;
2. there is an A_{∞}-operad \mathcal{A} and a map of graded operads
 \[
 \mu : \mathcal{A} \longrightarrow O
 \]
 (multiplication map)
 with $\mu(\mathcal{A}(2)) \subset O_0(2)$ path connected; and
3. the maps
 \[
 D_\infty : O_\infty(n) \longrightarrow O_\infty(0)
 \]
 induce homology isomorphisms.
Operads with homological stability

Examples:

1. C_∞ is and OHS concentrated in degree zero and multiplication $\mu : C_1 \rightarrow C_\infty$. Since $C_\infty(n)$ is contractible, conditions 2 and 3 are trivially satisfied.

2. The Riemann surfaces operad \mathcal{M} with $\mathcal{M}(n) = \coprod_{g \geq 0} \mathcal{M}_{g,n+1} \simeq \coprod_{g \geq 0} \mathcal{B}\Gamma_{g,n+1}$

Figure: $\gamma : \mathcal{M}_{0,2+1} \times [\mathcal{M}_{1,2+1} \times \mathcal{M}_{0,0+1}] \rightarrow \mathcal{M}_{1,2+1}$

Maria Basterra

OHS detect infinite loops spaces
Theorem (B., Bobkova, Ponto, Tillmann, Yeakel)

Suppose O is an OHS. Then,

$$G : O \text{– algebras} \longrightarrow \Omega^\infty \text{– spaces}$$

is a functor with image Ω^∞-spaces with a compatible Ω^∞-map

$$G O(*) \times GX \longrightarrow GX,$$

where the source is given the product Ω^∞-space structure.
Proof sketch: Step 1 - Operad replacement

Let \mathcal{O} be an OHS. Then the product operad $\tilde{\mathcal{O}} := \mathcal{O} \times C_\infty$ is an OHS with compatible maps of operads

$$\mathcal{O} \leftarrow \tilde{\mathcal{O}} \rightarrow C_\infty.$$

Then, any \mathcal{O}-algebra is an $\tilde{\mathcal{O}}$-algebra. W.L.O.G we assume a compatible map $\pi : \mathcal{O} \rightarrow C_\infty$. For any space X, there is a map of \mathcal{O}-algebras

$$\tau \times \pi : \mathcal{O}(X) \rightarrow \mathcal{O}(\ast) \times C_\infty(X),$$

where τ is induced by $X \rightarrow \ast$ and the target has the diagonal action of \mathcal{O}.

Maria Basterra
OHS detect infinite loops spaces
Claim: For any based space X,

$$G(\tau) \times G(\pi) : G(O(X)) \rightarrow G(O(*)) \times G(C_{\infty}(X))$$

is a weak homotopy equivalence.

“Proof”: By Whitehead theorem e.t.s isomorphism in homology.

By the group completion theorem e.t.s

$$\tau_{\infty} \times \pi_{\infty} : O_{\infty}(X) \rightarrow O_{\infty}(* \times C_{\infty}(X))$$

induces isomorphism in homology.

Filtering by arity in the operad and taking filtration quotients reduces to show that for each n and Σ_n space Y

$$\tilde{D}_{\infty} \times (\pi_{\infty} \times 1_Y) : O_{\infty}(n) \times_{\Sigma_n} Y \rightarrow O_{\infty}(0) \times (C_{\infty}(n) \times_{\Sigma_n} Y)$$

is a homology isomorphism.

This follows by homological stability of O.

Maria Basterra OHS detect infinite loops spaces
Step 3: A functor from O-algebras to Ω^∞ spaces

Claim: The assignment $X \mapsto |GB_\bullet(C_\infty, O, X)|$ defines a functor from O-algebras to Ω^∞-spaces.

Proof: Recall (May): there is a map of monads

$$\alpha: C_\infty \longrightarrow \Omega^\infty \Sigma^\infty;$$

and for every based space Z, the map

$$\alpha: C_\infty Z \longrightarrow \Omega^\infty \Sigma^\infty Z$$

is a group completion.

For any map of O-algebras $f: X \longrightarrow Y$ the following diagram commutes. (The vertical arrows are equivalences and the horizontal ones are induced by f.)
Step 3: A functor from O-algebras to Ω^∞ spaces

\[
\begin{array}{ccc}
|GB_\bullet(C_\infty, O, X)| & \longrightarrow & |GB_\bullet(C_\infty, O, Y)| \\
\downarrow & & \downarrow \\
|GB_\bullet(\Omega^\infty \Sigma_\infty, O, X)| & \longrightarrow & |GB_\bullet(\Omega^\infty \Sigma_\infty, O, Y)| \\
\uparrow & & \uparrow \\
|G\Omega^\infty B_\bullet(\Sigma_\infty, O, X)| & \longrightarrow & |G\Omega^\infty B_\bullet(\Sigma_\infty, O, Y)| \\
\uparrow & & \uparrow \\
|\Omega^\infty B_\bullet(\Sigma_\infty, O, X)| & \longrightarrow & |\Omega^\infty B_\bullet(\Sigma_\infty, O, Y)| \\
\uparrow & & \uparrow \\
\Omega^\infty |B_\bullet(\Sigma_\infty, O, X)| & \longrightarrow & \Omega^\infty |B_\bullet(\Sigma_\infty, O, Y)|
\end{array}
\]
We have seen that for any based space X

$\mathcal{G}(\mathcal{O}(X)) \simeq \mathcal{G}(\mathcal{O}(\ast)) \times \mathcal{G}(\mathcal{C}_\infty(X))$

For an \mathcal{O}-algebra X we have a homotopy fibration sequence

$$\mathcal{G}\mathcal{O}(\ast) \rightarrow |\mathcal{G}B\ast(\mathcal{O}, \mathcal{O}, X)| \rightarrow |\mathcal{G}B\ast(\mathcal{C}_\infty, \mathcal{O}, X)|$$

Applying it to the product \mathcal{O}-algebra $\mathcal{O}(\ast) \times X$ allows to conclude that

$$\mathcal{G}X \simeq |\mathcal{G}B\ast(\mathcal{C}_\infty, \mathcal{O}, \mathcal{O}(\ast) \times X)|.$$

which we saw to be an Ω^∞-space.
Examples and applications: Surface operads

Oriented surfaces and diffeomorphisms: S

$S(n) = \bigsqcup_{g \geq 0} BS_{g,n+1}$.

By Madsen-Weiss $\mathcal{GS}(0) \simeq \mathbb{Z} \times B\Gamma_{\infty}^+ \simeq \Omega^{\infty} \mathbb{M} \mathbb{T} \mathbb{SO}(2)$.
Nonorientable surfaces and diffeomorphisms: \(\mathcal{N} \)

Let \(N = \mathbb{R}P^2 \setminus (D^2 \coprod D^2) \). Let \(N_{k,n+1} \) be a surface of nonorientable genus \(k \) with one outgoing and \(n \) incoming boundary components built out of \(D, P, S^1 \) and \(N \).

\[
\mathcal{N}(n) \approx \coprod_{k \geq 0} BN_{k,n+1}.
\]

Homology stability results of Wahl give that \(\mathcal{N} \) is an OHS and

\[
\mathcal{G}\mathcal{N}(0) \approx \mathbb{Z} \times BN_{\infty}^+ \approx \Omega^\infty MTO(2),
\]

where \(\mathcal{N}_{\infty} = \lim_{k \to \infty} \pi_0 \text{Diff}(N_{k,1}, \partial) \) denotes the infinite mapping class group.
Let $W_{g,j+1}$ be the connected sum of g copies of $S^k \times S^k$ with $j + 1$ open disks removed.

Let $\theta : B \to BO(2k)$ be the k-th connected cover and fix a bundle map $\ell_W : TW \to \theta^*\gamma_{2k}$.

We construct a graded operad with

$$W_{g}^{2k}(j) \simeq M_k^\theta(W_{g,j+1}, \ell_{W_{g,j+1}})$$

By homological stability results of Galatius and Randal-Williams we have that for $2k \geq 2$ the operad W^{2k} is an OHS and

$$\Omega B_0 W^{2k}(0) \simeq \left(\operatorname{hocolim}_{g \to \infty} M_k^\theta(W_{g,1}, \ell_{W_{g,1}}) \right)^+ \simeq \Omega_0^{\infty} \mathbf{MT}\theta.$$