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These are notes taken in preparation for a talk for Babytop during Spring 2024, which covered the
[BSSW24] computation of the rational homotopy groups of the K (n)-local sphere using methods
from p-adic Hodge theory. My talk aimed to cover part of §4 of this paper, on the Galois cohomology
of the ring of integers in the completion of the algebraic closure of a local field. I do not know
much about anything involving the adjective p-adic, so I would like to apologize in advance for any
confusion caused. Any mistakes are due to me, and unless otherwise indicated all results here are
due to [BSSW24].

I would like to thank Andy Senger for a lot of help in understanding the contents of the paper, and
Merrick Cai, Daishi Kiyohara, Frank Lu, and Dylan Pentland for helping me fill in some background
I needed to understand what was going on.
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1. INTRODUCTION

So far in the seminar, we have spent a lot of time introducing the background needed to understand
and prove the following theorem of interest.

Theorem 1.0.1 ([BSSW24], Thm. B). For every integer s > 0, the natural map W := W(Fp) —
W(F,)[u1, ..., un—1] =: Ainduces a rational isomorphism
HSts(Gm W) Kz, @p = Hgts(G’fH A) Xz, Qp-
For the topologically-inclined, this provides a way, at least rationally, to simplify the input to the
Devinatz-Hopkins spectral sequence
Hcsts (Gna At) - 7Tt—sLK(’rL)Sv

which is what will eventually allow us to deduce the landmark computation of the rational homotopy
groups of the K (n)-local sphere.

Theorem 1.0.2 ([BSSW24], Thm. A). There is an isomorphism of graded Q-algebras

Q Y 7T*LK(n)S = AQP (Ch C2a cee C’n)~
1
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Using the titular two towers isomorphism that Andy discussed, we can approach a proof of The-
orem 1.0.1 via methods of p-adic geometry. It turns out that a crucial ingredient will be to have a
good understanding of the pro-étale cohomology

H* (Xproéta @+)

of a rigid analytic space X over a local field K of mixed characteristic (0,p). Today, we’ll start
working towards understanding this for the simplest case, X = Spa K, in which case this pro-étale
cohomology can actually be described as something perhaps more familiar: Galois cohomology. We
have

H*(Spa K, 0F) = H, (Gal(K/K), Oc),
where C' is the completion of the algebraic closure of K. To spoil the punchline, we will eventually
obtain the following theorem.

Theorem 1.0.3 ((BSSW24], Thm. C). Let K be a local field of characteristic (0,p), and let C be
the completion of an algebraic closure K of K. Let O C K and O¢ C C denote the valuation
rings. There is an isomorphism of graded O i -modules

H: . (Gal(K/K),O¢c) ~ Okle| @ T,
where € is a degree 1 element with €2 = 0, and T is p" -torsion for some absolute constant N.

In my talk, I will begin by reviewing some Galois theory and ramification theory, and then give
an overview of the argument to prove Theorem 1.0.3. Next week, Tristan will fill in the holes that I
have left behind to complete the proof.

2. SOME RAMIFICATION THEORY
We’ll begin by defining some of our main objects of study.

Definition 2.0.1. A nonarchimedean field is a field K which is complete with respect to the topology
induced from a nontrivial nonarchimedean valuation | | : K — R>q. Given a nonarchimedean field
K, we define its valuation ring or ring of integers

Og ={a e K :|a| <1},

which is a local ring; denote its residue field by x. The characteristic of a nonarchimedean field refers
to the pair (char K, char k).

We note that if L is any Galois extension of a nonarchimedean field K, then the valuation on K
extends uniquely to a valuation on L, and the completion L is nonarchimedean field with a continuous
action of Gal(L/K). So we can consider the continuous Galois cohomology

* « ((AhGal(L/K
Hiyo(Gal(L/K), Op) = H* (O} S/ |
the group cohomology of the Galois group acting on O; . Our goal will be to gain an understanding
of these groups when K is a local field.
Definition 2.0.2. A local field is a nonarchimedean field K such that

e the valuation on K is discrete, and
o the residue field x is perfect.
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We will be concerned with local fields of characteristic (0, p), the prototypical examples of which
are Q, and finite extensions of it; we also have slightly more exotic examples like W(E,)[%] Our
study of extensions of these local fields will be via ramification theory, which roughly studies how
the prime ideals in the ring of integers of a field split under field extensions.

First, let K be a local field of characteristic (0, p). Then the ring of integers Ok is a discrete
valuation ring, and so we can choose a uniformizer 7x and write any element oo € K* as

_ vk (a)
a=m "y,

where u is a unit. This defines a surjective map vy : K* — Z (which is independent of the choice
of uniformizer), known as the relative valuation map.

Definition 2.0.3. Let K be a local field of characteristic (0, p). The absolute ramification index of
Kis
ex = vk (p).

One way to understand what this number describes is by thinking about ideals. If K is a local field
of characteristic (0, p), it is in fact an extension of Qy, and we have an inclusion of discrete valuation
rings

Zp C Ok.
p is a uniformizer for Z,, and so the ideal pZ,, is the unique maximal ideal of Z,,. However, this does
not usually remain the case when we extend to K'; by definition, we have
POk = (Tr)".
So the absolute ramification index tells us how the maximal ideal of Z,, splits as a product of copies
of the maximal ideal in O, upon extending from Q,, to K.

One may notice that we can do something similar for any extension L/K, where K and L are
both local of characteristic (0, p). We can consider the inclusion of the rings of integers Ox C Op,
and see how the maximal ideal of O splits upon extending to Op ; that is, find the integer ey, /i that
gives us

ﬂ'KOL = (ﬂ'L)eL/K.
This leads to the definition of the relative ramification index.
Definition 2.0.4. Let K be a local field of characteristic (0, p), and let L be a finite extension of K.
Then it turns out that L is also a local field of characteristic (0, p). The relative ramification index
of L/K is
eL/K = UL(’]TK).
Question 2.0.5. The above definition makes sense when L is an arbitrary extension of K, as long as

they are both local. Later, we will make a definition of this relative ramification divisor for arbitrary
extensions, but I wonder if these definitions end up agreeing.

Now, recall that our goal is to eventually study F/ K, which is an infinite extension, and which
in particular need not be local. So we will need a way to make sense of ramification in infinite
extensions. We will accomplish this by studying certain filtrations of the Galois group.

Definition 2.0.6. Let L/ K be a finite Galois extension. We define an exhaustive decreasing filtration
on the Galois group Gal(L/K), denoted Gal(L/K), by the real numbers v > —1, by

Gal(L/K), ={oc € Gal(L/K) :vp(0(a) —a) >u+ 1forallaa € O }.
We call this the lower numbering filtration on Gal(L/K).
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It turns out that this filtration packages a lot of ramification-theoretic information nicely, as perhaps
illustrated by the following proposition.

Proposition 2.0.7. Let L/ K be a finite Galois extension of local fields of characteristic (0, p). Then
| Gal(L/K)0| = eL/K.
Remark 2.0.8. For those whom this means something, Gal(L/K) is the inertia group of L/ K.
This suggests an approach to studying ramification in infinite extensions; for an arbitrary Galois
extension L/ K, we can try to define a filtration on
Gal(L/K) = Lin Gal(L' /K),
L' /K finite subextension

coming from a filtration on the Galois groups of the finite subextensions. However, we can’t quite use
this lower numbering filtration to make a definition, because it is not compatible with the quotients
in the limit above; if L/K is a finite extension and L’ /K is a subextension, then it isn’t true that
Gal(L'/K), = Gal(L/K),,/ Gal(L/L"),. But do not despair; we will fix this by force.

Definition 2.0.9. Let L/ K be a finite Galois extension. The Herbrand function ¢,/ : [~1, 00) —
[—1, 00) is the continous, increasing and bijective function defined by
_Ju, —1<u<0
PRI = [MGal(L/K ) - Gal(L/K)i]"Ydt, u > 0.
Denote the inverse function of ¢,/ x by v1/x. The upper numbering filtration on Gal(L/K) is

defined by
Gal(L/K)" = Gal(L/K )y, 1 (u)-

Remark 2.0.10. Note that ¢,/ (0) = 0, so for any finite extension Gal(L/K)® = Gal(L/K)o.

By construction, we can check that the upper numbering filtration plays well with quotients (see
[Ser79, Chapter IV, §3, Proposition 14]), and so we obtain a filtration on the Galois group for infinite
extensions too.

Definition 2.0.11. Let L/K be an arbitrary Galois extension. For —1 < u < 0, We define the upper
numbering filtration on Gal(L/K) via the subgroups

Gal(L/K)" = Jim Gal(L'/K)".

L’ /K finite subextensions

With this, we are ready to talk about ramification in infinite extensions.

Definition 2.0.12. Let L/K be a Galois extension. We say L/K is ramified if Gal(L/K)? # {1}.
Otherwise, we say L/K is unramified.

3. AN OVERVIEW OF THE ARGUMENT

Now that we have some basic familiarity with ramification theory, let us start describing how we
are going to approach our theorem of interest, the computation of

H*(Gal(K/K),0c) = H* (ogGaK?/ K>) .
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The idea, originally due to Tate, is to consider an ramified intermediate extension K, / K with Galois
group Z,; using the fact that fixed points play nicely with quotients, we can then write

al(K (T hGal(Koo/K)
(3.0.1) OZG&I(K/K) ~ (OZGal(K/KOO))

As described in the beginning of [BSSW24, §4.2], we can always construct an extension like this.
Given a local field K of characteristic (0,p), let L/K be the extension obtained by adjoining a
primitive p"th root of unity (,» for all n > 1. This is a ramified extension with Galois group an
open subgroup of Z X, and so it has a maximal quotient isomorphic to Z,. We can see that K, /K
corresponding to this quotient is a ramified Z,-extension of K, called the cyclotomic Z,-extension.

By virtue of having Galois group Z,,, K, /K inherits a natural filtration by finite subextensions

KCKi CKyC--- C K,

where K, / K corresponds to the subgroup p"Z,, C Z,, with Galois group Z, /p"Z, = Z/p". Using
these subextensions, Tate obtains a pretty good understanding of the cohomology of our intermediate
middle term in Equation 3.0.1. We’ll state his result after a brief definition.

Definition 3.0.2. Let M be a module over a valuation ring R. We say M is almost zero if it is
a-torsion for any o € R with v(a) > 0.

Theorem 3.0.3 ( [Tat67], §3, Corollary 1). We have an isomorphism of O k. -modules.

Hgts (Gal(F/KOO), OC) — {Of{oov 1=0

almost zero, 1 > 0.
Said differently, we can define the complex of solid O k. -modules Y to be the cofiber

(3.0.4) Op — OREAEIRS) g

where the first morphism is induced from O — Oc. Then H°()y) = 0, and for all i > 0,
H(Yy) is almost zero in the sense that the action of any o € Ok withv(a) > 0 on it is zero.

We will omit proof of this theorem; for a sketch of the proof, take a look at [BSSW?24, Theorem
4.3.2]. Just to say some words that might mean something to people other than me; apparently most
of the proof hinges on the observation that K, is perfectoid.

Before we can transfer this to study OgGal(K/ K) , we will need a new way to measure ramification.

Definition 3.0.5. Let L/K be a finite Galois extension of local fields of characteristic (0, p). We
have the trace map try, /i : L — K, which yields a pairing
(—,=):LxL—oK
(w,y) = trp/k(vy).
The dual of Ok under this pairing is the set
{BeL:{ap)e€Okforallae O}
this is a fractional ideal of L containing Or. The different Dy, is the ideal of O which is the
inverse of this fractional ideal.

The different is an ideal of Of, so we can write it as (7}") for some m. The valuation of the
different vz, (D, k) will be this m. It turns out that in the case of the finite subextensions K, of K,
we can obtain a bound on this exponent.
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Lemma 3.0.6 ([BSSW24], Lemma 4.2.3). Let K, /K be a ramified Z,-extension. There exists an
integer N > 0 such that for alln > N we have

(3.0.7) vk, (P, i, ) > p—1+ex, (1—p" ™).

Definition 3.0.8. Let K, /K be a ramified Z,-extension. We call K, /K sufficiently ramified if
the inequality in Equation 3.0.7 holds for all n > 1.

Note that if we take [V to be the integer appearing in 3.0.6, then Ko, /K is sufficiently ramified.
Our torsion bounds on H (Gal(K /K), O¢) will come from a careful analysis of these sufficiently
ramified extensions. The following proposition will be our workhorse.

Proposition 3.0.9 ([BSSW24], Proposition 4.2.17). Let K,/K be a ramified Z,-extension. Let
N > 0 be large enough so that K., /Ky is sufficiently ramified. Define a p-adically complete
abelian group X with continuous Gal(K - / K)-action by the exact sequence

0—-0k -0 —X—0.

Then H: (Gal(K+/K),X) = 0 forall i # 1, and H.(Gal(K/K), X) is p™NT2-torsion for
p # 1 and pNt3-torsion for p # 2.
Restated in terms of complexes, we have a cofiber sequence
O?(Gal(Koo/K) N O?{Gal(Kw/K) _, xhGal(Ke/K) _. y.

Then H'(X) = 0 fori # 1, and HY(X) = H.(Gal(K/K), X) is torsion as claimed above.

We won’t prove this today, but next week we might get an idea of how to arrive at this. For now,
let’s take a look at how we can use this to prove our theorem of interest. First, recall the cofiber
sequence from Tate’s theorem, appearing in Equation 3.0.4. We can take Gal(K ./ K)-fixed points
to obtain the cofiber sequence

(3.0.10) @}(Gal(Koc/K) . OgGal(?/K) Sy,
where ) = yoh Gal(K</K) "Our first result in this direction is the following theorem.

Theorem 3.0.11 ([BSSW24], Theorem 4.3.10). Let Ko,/ K be a ramified Z,-extension, and let N
be large enough so that K . | K is sufficiently ramified. Define Z by the cofiber sequence

(3.0.12) LGl /K) _ phGal(K/K) _, 7
where the first morphism is the composite O?(Gal(K’x/ K OZGM(K“/ K, OZGal(?/ K) Then
0, i =
HY(Z) = { pN*t3-torsion (resp., pN T-torsion), i=1
p-torsion (resp., p>-torsion), 1> 2

as p is odd or even, respectively.

Proof. We have three cofiber sequences

O?{Gal(K(x,/K) . O?{Gal(KOC/K) oy
h Gal(Koo /K hGal(K /K
Okm( /)_>Oc (/)_>y

O?{Gal(Kw/K) N OICLGal(?/K) Sz
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from Proposition 3.0.9, Equation 3.0.10, and the statement of the theorem, respectively. The octahe-
dral axiom then tells us that we have a cofiber sequence

X —=Z = ).

Our workhorse Proposition 3.0.9 gives us control of the torsion in X, and the following lemma gives
us control of the torsion in ).

Lemma 3.0.13 ([BSSW24], Lemma 4.3.7). H°(Y) = 0, and for all i > 1, H(Y) is p-torsion if p
is odd, and p?-torsion if p = 2.

I'll just give one comment on this lemma; if you are okay with just having that it is p?-torsion for
all primes, this follows from considering the homotopy fixed points spectral sequence for ). To get
that it is p-torsion for odd p requires some extra thought.

In any case, our theorem then follows from this lemma and Proposition 3.0.9, by considering the
long exact sequence in cohomology associated to X — Z — ). (|

We are almost at our goal! Let’s see how we can use this theorem to finally prove Theorem 1.0.3,
which we will restate a little more precisely below.

Theorem 3.0.14. Let K be a local field of characteristic (0,p). Let C be the completion of an
algebraic closure K /| K. Then
(1) H(Gal(K/K),Oc) = Ok
(2) There exists an isomorphism of O i -modules
HY (Gal(K/K),0c) 2 Og & T
where T is p*-torsion (resp., pS-torsion) as p is odd or even, respectively.
(3) Fori > 1, Hi, (Gal(K/K),O¢) is p-torsion (resp., p*-torsion) as p is odd or even, respec-
tively.
Remark 3.0.15. If K has rame ramification; that is, if p { e, or if it is a cyclotomic extension of a
tamely ramified field, then the bound in (2) can be improved to p? for p odd, and p® for p even.

Proof. Let K, /K be aramified Z,-extension. Take a look at the long exact sequence associated to
sequence in Equation 3.0.12,

O?(Gal(Koc/K) N OgGal(?/K) Lz

The action of Gal(K/K) on Ok is trivial, so we obtain H°(Gal(K/K),O¢) = Og, proving
(1). We further retrieve isomorphisms H’ (Gal(K/K),O¢) & H'(Z) for i > 1; Theorem 3.0.11
then gives us (3).

Towards proving (2), we will take a look at last part of this long exact sequence, with the stuff in
degree 1:

0— O — HL (Gal(K/K),O¢) — H'(Z) — 0.

For starters, assume that K, /K is sufficiently ramified. Then Theorem 3.0.11 gives us that H!(Z)
is p3- or p®-torsion as p is odd or even. Further, we have the following lemma:

Lemma 3.0.16. Given an exact sequence of O -modules
0—- M - M — My —0,

with M finite free of rank r and M killed by p™, there exists an isomorphism M =~ O??T @& T, where
T is p"-torsion.
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This allows us to conclude that H,(Gal(K /K), O¢) = Ok @ T, where T is p* /p°-torsion.

In the general case, this line of argument shows us that H,((Gal(K /K), O¢) = Ok @ T, where
T is p"-torsion for some r; we need to revise this down using the sufficiently ramified case. If we let
N be large enough that K, /Ky is sufficiently ramified, then considering the short exact sequence
above shows us that we have an injection O, — H}(Gal(K/K),Oc) whose cokernel is killed
by p?/p°. We then can look at the inflation-restriction sequence for the tower K, /K, /K; in part,
this reads

HY(Gal(Kn/K),Ok,) — HL(Gal(K/K),Oc) — H}

cts

(Gal(K /Ky ), O¢) KN /K

By a theorem of Sen ([BSSW24, Theorem 4.0.2]), the term on the left of this sequence is p-torsion,
and so we can see that p* /pS kills all torsion in H!(Gal(K/K), O¢), proving (2). O
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