
10. 18.03 PDE Exercises Solutions

10A. Heat Equation; Separation of Variables

10A-1 (i) Trying a solution u(x, t) = v(x)w(t) leads to separated solutions uk(x, t) =
vk(x)wk(t) where vk(x) = sin(πkx), and wk(t) = e−2π

2k2t, and k = 0, 1, 2, . . ..

(ii) u(x, 0) = 2
π

∑∞
k=1

(−1)k+1

k
sin(πkx)

(iii) u(x, t) = 2
π

∑∞
k=1

(−1)k+1

k
sin(πkx)e−π

2k2t

(iv) u(1
2
, 1) ≈ .00032

10A-2 (i) Separated solutions uk(x, t) = vk(x)wk(t) where vk(x) = sin(πkx), and
wk(t) = e−2π

2k2t (Note factor of 2 from (10A-2.1)) and k = 0, 1, 2, . . .

(ii) u(x, 0) = 4
π

∑
k odd

sin(πkx)
k

(iii) u(x, t) = 4
π

∑
k odd

sin(πkx)
k

e−2π
2k2t

10A-3 (a) ust(x, t) = U(x) = 1 − x

(b) Since the heat equation is linear ũ satisfies the PDE (10A-3.1). At the boundary
(x = 0 and x = 1) we have ũ(0, t) = u(0, 1) − ust(0, t) = 1 − 1 = 0. Likewise
ũ(1, t) = 0. That is, ũ is a solution to the heat equation with homogeneous boundary
conditions in 10A-1. The initial condition is ũ(x, 0) = x. We found the coefficients
for this in 10A-1.

ũ(x, t) =
2

π

∞∑
k=1

(−1)k+1

k
sin(πkx)e−2π

2k2t.

(c)

u(x, t) = U(x) + ũ(x, t) = 1 − x+
2

π

∞∑
k=1

(−1)k+1

k
sin(πkx)e−2π

2k2t.

(d) u(x, t)−U(x) = ũ(x, t) The term in the sum for ũ that decays the slowest is when
k = 1. Therefore we need 2

π
e−2π

2T = .01U(1/2) = .005. Solving we get T = .246

10B. Wave Equation

10B-1 (a) Separating variables, we look for a solutions of the form u(x, t) = v(x)w(t),
which leads to v′′(x) = λv(x) with v(0) = v(π/2) = 0, and hence

vk(x) = sin(2kx)

Consequently, ẅk = −(2k)2c2wk, whic implies

wk(t) = A cos(2ckt) +B sin(2ckt)
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The normal modes are

uk(x, t) = sin(2kx)(A cos(2ckt) +B sin(2ckt)),

where A and B must be specified by an initial position and velocity of the string.

(b) The main note (from the mode u1) has frequency
2c

2π
=
c

π
. You will also hear the

higher harmonics at the frequencies
ck

π
, k = 2, 3, . . . . (The sound waves induced by

the vibrating string depend on the frequency in t of the modes.)

(c) Longer strings have lower frequencies, lower notes, and shorter strings have higher
frequencies, higher notes. If the length of the string is L, then the equations v′′(x) =
λv(x), v(0) = v(L) = 0 lead to solutions vk(x) = sin(kπx/L). (In part (a), L = π/2.)
The associated angular frequencies in the t variable are kcπ/L, so the larger L, the
smaller kcπ/L and the lower the note. Thus c is inversely proportional to the length
of the string.

(d) When you tighten the string, the notes get higher, and the frequency you hear is
increased. (Tightening the string increases the tension in the string and increases the
spring constant, which corresponds to c. The frequencies of the sounds are directly
proportional to c.)
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