LT. Laplace Transform

1. Translation formula. The usual L.T. formula for translation on the t-axis is

$$
\begin{equation*}
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s), \quad \text { where } F(s)=\mathcal{L}(f(t)), \quad a>0 . \tag{1}
\end{equation*}
$$

This formula is useful for computing the inverse Laplace transform of $e^{-a s} F(s)$, for example. On the other hand, as written above it is not immediately applicable to computing the L.T. of functions having the form $u(t-a) f(t)$. For this you should use instead this form of (1):

$$
\begin{equation*}
\mathcal{L}(u(t-a) f(t))=e^{-a s} \mathcal{L}(f(t+a)), \quad a>0 . \tag{2}
\end{equation*}
$$

Example 1. Calculate the Laplace transform of $u(t-1)\left(t^{2}+2 t\right)$.
Solution. Here $f(t)=t^{2}+2 t$, so (check this!) $f(t+1)=t^{2}+4 t+3$. So by (2),

$$
\mathcal{L}\left(u(t-1)\left(t^{2}+2 t\right)\right)=e^{-s} \mathcal{L}\left(t^{2}+4 t+3\right)=e^{-s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{3}{s}\right) .
$$

Example 2. Find $\mathcal{L}\left(u\left(t-\frac{\pi}{2}\right) \sin t\right)$.
Solution.

$$
\begin{aligned}
\mathcal{L}\left(u\left(t-\frac{\pi}{2}\right) \sin t\right) & =e^{-\pi s / 2} \mathcal{L}\left(\sin \left(t+\frac{\pi}{2}\right)\right. \\
& =e^{-\pi s / 2} \mathcal{L}(\cos t)=e^{-\pi s / 2} \frac{s}{s^{2}+1} .
\end{aligned}
$$

Proof of formula (2). According to (1), for any $g(t)$ we have

$$
\mathcal{L}(u(t-a) g(t-a))=e^{-a s} \mathcal{L}(g(t)) ;
$$

this says that to get the factor on the right side involving g, we should replace $t-a$ by t in the function $g(t-a)$ on the left, and then take its Laplace transform.

Apply this procedure to the function $f(t)$, written in the form $f(t)=f((t-a)+a)$; we get ("replacing $t-a$ by t and then taking the Laplace Transform")

$$
\mathcal{L}(u(t-a) f((t-a)+a))=e^{-a s} \mathcal{L}(f(t+a)),
$$

exactly the formula (2) that we wanted to prove.
Exercises. Find: a) $\mathcal{L}\left(u(t-a) e^{t}\right)$
b) $\mathcal{L}(u(t-\pi) \cos t)$
c) $\mathcal{L}\left(u(t-2) t e^{-t}\right)$

Solutions.
a) $e^{-a s} \frac{e^{a}}{s-1}$
b) $-e^{-\pi s} \frac{s}{s^{2}+1}$
c) $e^{-2 s} \frac{e^{-2}(2 s+3)}{(s+1)^{2}}$

M.I.T. 18.03 Ordinary Differential Equations 18.03 Notes and Exercises

© Arthur Mattuck and M.I.T. 1988, 1992, 1996, 2003, 2007, 2011

