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[1] Multiple springs.

The “Coupled Oscillators” Mathlet shows a system with three springs
connecting two masses. The ends of the springs are fixed, and the whole
thing is set up so that there is a position in which all three springs are
relaxed. Let’s see some of the behaviors that are possible.

Wow, this is pretty complicated. Imagine what happens with five springs,
or a hundred . . . .

Let’s analyze this. The spring constants are k1, k2, k3; the masses are
m1, m2. The displacement from relaxed positions are x1, x2.

Let’s look at the special case when k1 = k2 = k3 = k and m1 = m2 = m.
You can put the subscripts back in on your own.

The forces on the objects are given by{
mẍ1 = −kx1 + k(x2 − x1) = −2kx1 + kx2
mẍ2 = −k(x2 − x1)− kx2 = kx1 − 2kx2

Let’s divide through by m, and agree to write k/m = ω2.

There’s a matrix here, B = ω2

[
−2 1
1 −2

]
. (This is the same as the heat

conduction matrix!) We have
ẍ = Bx

What do do about the second derivative? Let’s do the companion trick! Set
y = ẋ, so {

ẋ = y
ẏ = Bx

1



Breaking this down even further, y1 = ẋ1, y2 = ẋ2; so we have four equations
in four unknown functions:

ẋ1 = y1
ẋ2 = y2
ẏ1 = −2ω2x1 + ω2x2
ẏ2 = ω2x1 − 2ω2x2

We might be quite uncomfortable about the prospect of computing eigen-
values of 4×4 matrices without something like Matlab. But we have a block
matrix here:

A =

[
0 I
B 0

]
and

d

dt

[
x
y

]
=

[
0 I
B 0

][
x
y

]
Let’s think about the eigenvector equation: It’s[

0 I
B 0

][
x
y

]
= λ

[
x
y

]
This breaks down to two simpler equations:{

y = λx
Bx = λy

Plugging the first equation into the second gives

Bx = λ2x

This says that the vector x =

[
x1
x2

]
is an eigenvector for B associated to

the eigenvalue λ2.

We have learned that the four eigenvalues of A are the square roots of the
two eigenvalues of B. And the eigenvectors are gotten by putting λx below
the x.

Well let’s see. The characteristic polynomial of B is

pB(λ) = λ2 + 4ω2λ+ 3ω4 = (λ+ ω2)(λ+ 3ω2)
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so its eigenvalues are −ω2 and −3ω2.

That says the eigenvalues of A are ±iω and ±
√

3iω.

We’re almost there. The eigenvectors for B: For −ω2 we want to find a

nonzero vector killed by B − (−ω2I) = ω2

[
−1 1
1 −1

]
;

[
1
1

]
will do. The

matrix is symmetric so eigenvectors for different eigenvalues are orthogonal;

an eigenvector for value −3ω2 is

[
1
−1

]
.

So the eigenvectors for A are given by

λ = ±iω :


1
1
±iω
±iω

 , λ = ±
√

3iω :


1
−1

±
√

3iω

∓
√

3iω


This gives us exponential solutions!

eiωt


1
1
iω
iω

 , ei
√
3ωt


1
−1√
3iω

−
√

3iω


and their complex conjugates. We can get real solutions by taking real and
imaginary parts. Let’s just write down the top halves; the bottom halves are
just the derivatives.[

cos(ωt)
cos(ωt)

]
,

[
sin(ωt)
sin(ωt)

]
,

[
cos(
√

3ωt)

− cos(
√

3ωt)

]
,

[
sin(
√

3ωt)

− sin(
√

3ωt)

]
The first two combine to give the general sinusoid of angular frequency ω

for x1 and x2 = x1. In this mode the masses are moving together; the spring
between them is relaxed.

The second two combine to give a general sinusoid of angular frequency√
3ω for x1, and x2 = −x1. In this mode the masses are moving back and

forth relative to each other.

These are “normal modes.” I have used this term as a synonym for “expo-
nential solutions” earlier in the course, but now we have a better definition.
From Wikipedia:
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A normal mode of an oscillating system is a pattern of motion
in which all parts of the system move sinusoidally with the same
frequency and with a fixed phase relation.

We can see them here on the Mathlet, if I adjust the initial conditions.

Behind the chaotic movement there are two very regular, sinuoidal mo-
tions. They happen at different frequencies, and that makes the linear combi-
nations look chaotic. In fact the two frequencies never match up, because

√
3

is an irrational number. Except for the normal mode solutions, no solutions
are perioidic.

The physics department has graciously provided some video footage of
this in real action’: http://www.youtube.com/watch?v=zlzns5PjmJ4Coupled
Air Carts You can’t see the springs here, and at the outset the masses have
brakes on. When they turn the switch, the carts become elevated and move.

Check out the action at 5:51 as well: five carts!

I didn’t really finish what could be gleaned from the “Coupled Oscillators”
applet. All three springs have the same strength k, and the masses all have
the same value m. What do you think? Are you seeing periodic motion here?

[The class was split on this question.]

Let’s see. We calculated that there at least two families of periodic,
even sinusoidal, solutions. They come from the eigenvalues ±ωi and ±

√
3ωi,

where ω =
√
k/m. I have the applet set to m = 1 and k = 4. These special

“normal mode” solutions are:[
x1
x2

]
= A

[
cos(ωt− φ)
cos(ωt− φ)

]
,

[
x1
x2

]
= A

[
cos(
√

3ωt− φ)

− cos(
√

3ωt− φ)

]
The general solution is a linear combination of these two. I claim that if

both normal modes occur in the linear combination, then you will definitely
NOT have a periodic solutions. This comes from the number-theoretic fact
that

√
3 is irrational!

[2] Heat Phase Portrait.

I want to discuss how initial conditions can be used to specify which
linear combination you get, in a situation like this—we are talking about
ẋ = Ax. For an example I’d like to go back to the insulated rod from LA.1.
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For 3 thermometers, placed at 1, 2, and 3 feet, the details are a little msesy.
The same ideas are already visible with two thermometers, so let’s focus on
that. The temperatures at 0, 1, 2, and 3 feet are x0, x1, x2, x3. The equation
controlling this is

d

dt

[
x1
x2

]
=

[
−2 1
1 −2

][
x1
x2

]
+

[
x0
x3

]
We’re interested in the homogeneous case, so we’ll take x0 = x3 = 0 (in
degrees centegrade, not Kelvin!), and I’m taking the conduction constant to
be k = 1.

You can easily find eigenvalues λ1 = −1 and λ2 = −3. This tells us right
off that some solutions decay like e−t, some others decay like e−3t, and in
general you get a mix of the two. In paricular: no oscillation, and stable. In
fact we can answer:

Question 18.1 This is a

1. Stable Spiral
2. Stable Saddle
3. Stable Node
4. Unstable Spiral
5. Unstable Saddle
6. Unstable Node
7. Don’t know.

[There was uniform agreement that 3 is correct. Of course there is no
such thing as a “stable saddle.”

To get more detail we need to know the eigenvectors. Get them by sub-
tracting the eigenvalue from the diagonal entry and finding a vector killed

by the result. For λ = −1 we get

[
−1 1
1 −1

]
, which kills

[
1
1

]
and all

multiples. We could do the same for the other eigenvalue, but as pointed
out in LA.6 symmetric matrices have orthogonal eigenvectors (for distict

eigenvalues), so a nonzero eigenvector for λ = −3 is given by

[
1
−1

]
.

So we get two basic exponential solutions: e−t
[

1
1

]
and e−3t

[
1
−1

]
.

We can now draw the two eigenlines. Ray solutions converge exponen-
tially to zero along them. These solutions are characterized by the fact that
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the ratio between x1 and x2 is constant in time. These are the normal
modes for the heat model. The Wikipedia definition was applicable only
to oscillating motion. You know, the word “normal mode” is like the word
“happiness.” It’s hard to define, you know it when you see it, and it’s really
important, the basis of everything.

Other solutions are a mix of these two normal modes. IMPORTANT: The
smaller the (real part of) the eigenvalue, the quicker the decay. e−3t = (e−t)3,
so when e−t = 0.1, e−3t = 0.001. So the component of v2 decays much
more rapidly than the component of v1, so these other trajectories approach
tangency with the eigenline for value −1.

[3] Initial conditions.

Suppose I have a different initial condition, maybe

[
1
2

]
: so the temper-

atures are 0, 1, 2, 0. What happens? What are c1 and c2 in

x(t) = c1e
−t + c2e

−3t

How can we find c1 and c2?

More generally, when we are studying ẋ = Ax, and we’ve found eigenval-
ues λ1, . . . and nonzero eigenvectors v1, . . ., the general solution is

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · ·

We’re interested in the cofficients ci giving specified initial condition x(0) =
v. Since eλ·0 = 1 alwasy, our equation is

v = c1v1 + · · ·+ cnvn

As with many computations, the first step is to rewrite this as a matrix
equation:

v =
[
v1 · · · vn

] c1
...
cn


We will write S for the matrix whose columns are the eigenvectors, so v =
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S

 c1
...
cn

. Now it’s clear: we find c1, . . . by inverting S:

 c1
...
cn

 = S−1v

This is an important principle!

The entries in S−1v are the coefficients in

v = c1v1 + · · ·+ cnvn

In our example, S−1 = 1
−2

[
−1 −1
−1 1

]
=

1

2

[
1 1
1 −1

]
, so

[
c1
c2

]
=

1

2

[
1 1
1 −1

][
1
2

]
=

[
3/2
−1/2

]
sou our particular solution is

x(t) =
3

2
e−t
[

1
1

]
− 1

2
e−3t

[
1
−1

]
The second term decays much faster than the first.

[4] Coordinates.

The big idea: a system can seem complicated just because we are using
the wrong coordinates to describe it.

I want to let x be any vector; maybe it varies with time, as a solution
of ẋ = Ax. We can write it as a linear combination of v1, . . ., but now the
coefficients can vary too. I’ll write y1, y2, . . . for them to make them look
more variable:

x = y1v1 + y2v2 + · · ·

or
x = Sy
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For example, [
x1
x2

]
= x =

[
1 1
1 −1

]
y =

[
y1 + y2
y1 − y2

]
This is a change of cooridinates. The y1 axis (where y2 = 0) is the λ1
eigenline; the y2 axis (where y1 = 0) is the λ2 eigenline.

We can change back using S−1:

y = S−1x

so for us [
y1
y2

]
=

1

2

[
1 1
1 −1

][
x1
x2

]
i.e.

y1 =
x1 + x2

2
, y2 =

x1 − x2
2

[5] Diagonalization.

OK, but these vectors vi have something to do with the matrix A: they
are eigenvectors for it. What does this mean about the relationship between
S and A? Well, the eigenvector equation is

Av = λv

that is,
Av1 = λ1v1 , · · · , Avn = λnvn

Line these up as the columns of a matrix product:

AS = A
[
v1 · · · vn

]
=
[
λ1v1 · · · λnvn

]
Now comes a clever trick: the right hand side is a matrix product as well:

· · · =
[
v1 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = SΛ

where Λ (that’s a big “lambda”) is the “eigenvalue matrix,” with little λ’s
down the diagonal. That is:

AS = SΛ
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or
A = SΛS−1

This is a diagonalization of A. It exhibits the simlicity hidden inside of A.
There are only n eigenvalues, but n2 entries in A. They don’t completely
determine A, of course, but they say a lot about it.

[6] Decoupling.

Now let’s apply this to the differential equation ẋ = Ax. I’m going to
plug

x = Sy and A = SΛS−1

into this equation.

ẋ =
d

dt
Sy = Sẏ

and
Ax = SΛS−1x = SΛy

Put it together and cancel the S:

ẏ = Λy

Spelling this out:
ẏ1 = λ1y1
ẏ2 = λ2y2
· · ·

ẏn = λnyn

Each variable keeps to itself; its derivatives don’t depend on the other vari-
ables. They are decoupled.

In our example,

y1 = x1+x2
2

satisfies ẏ1 = −y1
y2 = x1−x2

2
satisfies ẏ3 = −3y2

So the smart variables to use to record the state of our insulated bar
are not x1 and x2, but rather the average and the difference (or half the
difference). The average decays exponentially like e−t. The difference decays
much faster. So quite quickly, the two temperatures become very close, and
then the both of them die off exponentially to zero.
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