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[1] Exponentials

What is ex?

Very bad definition: ex is the xth power of the number e ∼ 2.718281828459045 . . .

Two problems with this: (1) What is e? (2) What does it mean to raise
a number to the power of, say,

√
2, or π?

Much better definition: y(x) = ex is the solution to the differential equa-

tion
dy

dx
= y with initial condition y(0) = 1.

Now there’s no need to know about e in advance; e is defined to be e1.
And ex is just a function, which can be evaluated at

√
2 or at π just as easily

as at an integer.

Note the sublety: you can’t use this definition to describe ex for any single
x (except x = 0); you need to define the entire function at once, and then
evaluate that function at the value of x you may want.

As you know, this gives us solutions to other equations: I claim that

y = ert satisfies
dy

dt
= ry. This comes from the chain rule, with x = rt:

dy

dt
=
dx

dt

dy

dx
= ry

A further advantage of this definition is that it can be extended to other
contexts in a “brain-free” way.

A first example is Euler’s definition

eiθ = cos θ + i sin θ
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We defined x(t) = e(a+bi)t to be the solution to ẋ = (a + bi)x, and then
calculated that

e(a+bi)t = eat(cos(bt) + i sin(bt))

In all these cases, you get the solution for any initial condition: ertx(0)
is the solution to ẋ = rx with initial condition x(0).

[2] Matrix exponential

We’re ready for the next step: We have been studying the equation

dx

dt
= Ax

where A is a square (constant) matrix.

Definition. eAt is the matrix of functions such that the solution to ẋ = Ax,
in terms of its initial condition, is eAtx(0).

How convenient is that!

If we take x(0) to be the vector with 1 at the top and 0 below, the product
eAtx(0) is the first column of eAt. Similarly for the other columns. So:

Each column of eAt is a solution of ẋ = Ax. We could write this:

d

dt
eAt = AeAt

eAt is a matrix-valued solution! It satisfies a simple initial condition:

eA0 = I

Not everything about 1× 1 matrices extends to the general n×n matrix.
But everything about 1×1 matrices does generalize to diagonal n×nmatrices.

If A = Λ =

[
λ1 0
0 λ2

]
, the given coordinates are already decoupled: the

equation ẋ = Ax is just ẋ1 = λ1x1 and ẋ2 = λ2x2. Plug in initial condition[
1
0

]
: the first column of eΛt is

[
eλ1t

0

]
. Plug in initial condition

[
0
1

]
: the

second column is

[
0
eλ2t

]
. So

eΛt =

[
eλ1t 0
0 eλ2t

]
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Same works for n× n, of course.

[3] Fundamental matrices

Here’s how to compute eAt. Suppose we’ve found the right number (n)
independent solutions of ẋ = Ax: say u1(t), . . . ,un(t). Line them up in a
row: this is a “fundamental matrix” for A:

Φ(t) =
[

u1 u2 · · · un

]
The general solution is

x(t) = Φ(t)

 c1
...
cn



Φ(t) may not be quite eAt, but it’s close. Note that x(0) = Φ(0)

 c1
...
cn

,

or

 c1
...
cn

 = Φ(0)−1x(0). Thus

x(t) = Φ(t)Φ(0)−1x(0)

So
eAt = Φ(t)Φ(0)−1

for any fundamental matrix Φ(t).

Example: A =

[
0 −1
1 0

]
. Characteristic polynomial pA(λ) = λ2+1, so the

eigenvalues are ±i. The phase portrait is a “center.” Eigenvectors for λ = i

are killed by A − iI =

[
−i 1
1 −i

]
; for example

[
1
i

]
. So the exponential

solutions are given by

eit
[

1
i

]
= (cos t+ i sin t)

[
1
i

]
and its complex conjugate. To find real solutions, take just the right linear
combinations of these to get the real and imaginary parts:

u1(t) =

[
cos t
− sin t

]
, u2(t) =

[
sin t
cos t

]
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These both parametrize the unit circle, just starting at different places. The
corresponding fundamental matrix is

Φ(t) =

[
cos t sin t
− sin t cos t

]
We luck out, here: Φ(0) = I, so

eAt =

[
cos t sin t
− sin t cos t

]

[4] Diagonalization

Suppose that A is diagonalizable: A = SΛS−1.

Example: A =

[
1 2
0 3

]
. You can find the eigenvalues as roots of the

characteristic polynomial, but you might as well remember that the eigenval-
ues of an upper (or lower) triangular matrix are the diagonal entries: here 1

and 3. Also an eigenvalue for 1 is easy: v1 =

[
1
0

]
. For the other, subtract

3 from the diagonal entries:

[
−2 2
0 0

]
kills v2 =

[
1
1

]
.

So

S =

[
1 1
0 1

]
, Λ =

[
1 0
0 3

]
Suppose A = SΛS−1. Then we have exponential solutions corresponding

to the eigenvalues:
u1(t)eλ1tv1 , . . .

These give a fine fundamental matrix:

Φ(t) =
[
eλ1tv1 . . . eλntvn

]
= SeΛt , S =

[
u1 . . . un

]
,Λ =

 λ1

. . .

λn


Then Φ(0) = S, so

eAt = SeΛtS−1
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In our example,

eAt =

[
1 1
0 1

][
et 0
0 e3t

][
1 −1
0 1

]
You could multiply this out, but, actually, the exponential matrix is often a
pain in the neck to compute, and is often more useful as a symbolic device.
Just like ex, in fact!

[5] The exponential law

I claim that
eA(t+s) = eAteAs

This is a consequence of “time invariance.” We have to see that both sides
are equal after multiplying by an arbitrary vector v. Let x(t) be the solution
of ẋ = Ax with initial condtion x(0) = v: so x(t) = eAtv. Now fix s and let

y(t) = x(t+ s) = eA(t+s)v

Calculate using the chain rule:

d

dt
y(t) =

d

dt
x(t+ s) = ẋ(t+ s) = Ax(t+ s) = Ay(t)

So y is the solution to ẏ = Ay with y(0) = x(s) = eAsv. That means that
y(t) = eAteAsv. QED

This is the proof of the exponential law even in the 1 × 1 case; and you
will recall that as such it contains the trigonometric addition laws. Powerful
stuff!
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