7. Fourier Series

Based on exercises in Chap. 8, Edwards and Penney, Elementary Differential Equations

7A. Fourier Series

7A-1. Find the smallest period for each of the following periodic functions:
a) $\sin \pi t / 3$
b) $|\sin t|$
c) $\cos ^{2} 3 t$

7A-2. Find the Fourier series of the function $f(t)$ of period 2π which is given over the interval $-\pi<t \leq \pi$ by
a) $f(t)= \begin{cases}0, & -\pi<t \leq 0 ; \\ 1, & 0<t \leq \pi\end{cases}$
b) $\quad f(t)= \begin{cases}-t, & -\pi<t<0 ; \\ t, & 0 \leq t \leq \pi\end{cases}$

7A-3. Give another proof of the orthogonality relations $\int_{-\pi}^{\pi} \cos m t \cos n t d t= \begin{cases}0, & m \neq n ; \\ \pi, & m=n .\end{cases}$ by using the trigonometric identity: $\cos A \cos B=\frac{1}{2}(\cos (A+B)+\cos (A-B))$.

7A-4. Suppose that $f(t)$ has period P. Show that $\int_{I} f(t) d t$ has the same value over any interval I of length P, as follows:
a) Show that for any a, we have $\int_{P}^{a+P} f(t) d t=\int_{0}^{a} f(t) d t$. (Make a change of variable.)
b) From part (a), deduce that $\int_{a}^{a+P} f(t) d t=\int_{0}^{P} f(t) d t$.

7B. Even and Odd Series; Boundary-value Problems

7B-1. a) Find the Fourier cosine series of the function $1-t$ over the interval $0<t<1$, and then draw over the interval $[-2,2]$ the graph of the function $f(t)$ which is the sum of this Fourier cosine series.
b) Answer the same question for the Fourier sine series of $1-t$ over the interval $(0,1)$.

7B-2. Find a formal solution as a Fourier series, for these boundary-value problems (you can use any Fourier series derived in the book's Examples):
a) $x^{\prime \prime}+2 x=1, \quad x(0)=x(\pi)=0$;
b) $x^{\prime \prime}+2 x=t, \quad x^{\prime}(0)=x^{\prime}(\pi)=0$ (use a cosine series)

7B-3. Assume $a>0$; show that $\int_{-a}^{0} f(t) d t= \pm \int_{0}^{a} f(t) d t$, according to whether $f(t)$ is respectively an even function or an odd function.

7B-4. The Fourier series of the function $f(t)$ having period 2, and for which $f(t)=t^{2}$ for $0<t<2$, is

$$
f(t)=\frac{4}{3}+\frac{4}{\pi^{2}} \sum_{1}^{\infty} \frac{\cos n \pi t}{n^{2}}-\frac{4}{\pi} \sum_{1}^{\infty} \frac{\sin n \pi t}{n}
$$

Differentiate this series term-by-term, and show that the resulting series does not converge to $f^{\prime}(t)$.

7C. Applications to resonant frequencies

7C-1. For each spring-mass system, find whether pure resonance occurs, without actually calculating the solution.
a) $2 x^{\prime \prime}+10 x=F(t) ; \quad F(t)=1$ on $(0,1), \quad F(t)$ is odd, and of period 2 ;
b) $x^{\prime \prime}+4 \pi^{2} x=F(t) ; \quad F(t)=2 t$ on $(0,1), \quad F(t)$ is odd, and of period 2 ;
c) $x^{\prime \prime}+9 x=F(t) ; \quad F(t)=1$ on $(0, \pi), \quad F(t)$ is odd, and of period 2π.

7C-2. Find a periodic solution as a Fourier series to $x^{\prime \prime}+3 x=F(t)$, where $F(t)=2 t$ on $(0, \pi), F(t)$ is odd, and has period 2π.

7C-3. For the following two lightly damped spring-mass systems, by considering the form of the Fourier series solution and the frequency of the corresponding undamped system, determine what term of the Fourier series solution should dominate - i.e., have the biggest amplitude.
a) $2 x^{\prime \prime}+.1 x^{\prime}+18 x=F(t) ; \quad F(t)$ is as in $7 \mathrm{C}-2$.
b) $3 x^{\prime \prime}+x^{\prime}+30 x=F(t) ; \quad F(t)=t-t^{2}$ on $(0,1), \quad F(t)$ is odd, with period 2 .

M.I.T. 18.03 Ordinary Differential Equations 18.03 Notes and Exercises

© Arthur Mattuck and M.I.T. 1988, 1992, 1996, 2003, 2007, 2011

