
V9. Surface Integrals

Surface integrals are a natural generalization of line integrals: instead of integrating over
a curve, we integrate over a surface in 3-space. Such integrals are important in any of the
subjects that deal with continuous media (solids, fluids, gases), as well as subjects that deal
with force fields, like electromagnetic or gravitational fields.

Though most of our work will be spent seeing how surface integrals can be calculated and
what they are used for, we first want to indicate briefly how they are defined. The surface
integral of the (continuous) function f(x, y, z) over the surface S is denoted by

(1)

∫ ∫

S

f(x, y, z) dS .

You can think of dS as the area of an infinitesimal piece of the surface S. To define the
integral (1), we subdivide the surface S into small pieces having area ∆Si, pick a point
(xi, yi, zi) in the i-th piece, and form the Riemann sum

(2)
∑

f(xi, yi, zi)∆Si .

As the subdivision of S gets finer and finer, the corresponding sums (2) approach a limit
which does not depend on the choice of the points or how the surface was subdivided. The
surface integral (1) is defined to be this limit. (The surface has to be smooth and not infinite
in extent, and the subdivisions have to be made reasonably, otherwise the limit may not
exist, or it may not be unique.)

1. The surface integral for flux.

The most important type of surface integral is the one which calculates the flux of a
vector field across S. Earlier, we calculated the flux of a plane vector field F(x, y) across a
directed curve in the xy-plane. What we are doing now is the analog of this in space.

We assume that S is oriented: this means that S has two sides and one of them has been
designated to be the positive side. At each point of S there are two unit normal vectors,
pointing in opposite directions; the positively directed unit normal vector, denoted by n, is
the one standing with its base (i.e., tail) on the positive side. If S is a closed surface, like
a sphere or cube — that is, a surface with no boundaries, so that it completely encloses a
portion of 3-space — then by convention it is oriented so that the outer side is the positive
one, i.e., so that n always points towards the outside of S.

Let F(x, y, z) be a continuous vector field in space, and S an oriented surface. We define

(3) flux of F through S =

∫ ∫

S

(F · n) dS =

∫ ∫

S

F · dS ;

the two integrals are the same, but the second is written using the common
and suggestive abbreviation dS = n dS.

F

n
S

dS

If F represents the velocity field for the flow of an incompressible fluid of density 1, then
F ·n represents the component of the velocity in the positive perpendicular direction to the

1
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surface, and F · n dS represents the flow rate across the little infinitesimal piece of surface
having area dS. The integral in (3) adds up these flows across the pieces of surface, so that
we may interpret (3) as saying

(4) flux of F through S = net flow rate across S,

where we count flow in the direction of n as positive, flow in the opposite direction as
negative. More generally, if the fluid has varying density, then the right side of (4) is the
net mass transport rate of fluid across S (per unit area, per time unit).

If F is a force field, then nothing is physically flowing, and one just uses the term “flux”
to denote the surface integral, as in (3).

2. Flux through a cylinder and sphere.

We now show how to calculate the flux integral, beginning with two surfaces where n

and dS are easy to calculate — the cylinder and the sphere.

Example 1. Find the flux of F = z i +x j +y k outward through the portion of the cylinder
x2 + y2 = a2 in the first octant and below the plane z = h.

Solution. The piece of cylinder is pictured. The word “outward” suggests
that we orient the cylinder so that n points outward, i.e., away from the z-
axis. Since by inspection n is radially outward and horizontal,

(5) n =
x i + y j

a
.

(This is the outward normal to the circle x2+ y2 = a2 in the xy-plane; n has
no z-component since it is horizontal. We divide by a to make its length 1.)

dz
a dθ

n

a
dθ

a

a

h

To get dS, the infinitesimal element of surface area, we use cylindrical coordinates to
parametrize the cylinder:

(6) x = a cos θ, y = a sin θ z = z .

As the parameters θ and z vary, the whole cylinder is traced out ; the piece we want satisfies
0 ≤ θ ≤ π/2, 0 ≤ z ≤ h . The natural way to subdivide the cylinder is to use little pieces
of curved rectangle like the one shown, bounded by two horizontal circles and two vertical
lines on the surface. Its area dS is the product of its height and width:

(7) dS = dz · a dθ .

Having obtained n and dS, the rest of the work is routine. We express the integrand of
our surface integral (3) in terms of z and θ:

F · n dS =
zx+ xy

a
· a dz dθ , by (5) and (7);

= (az cos θ + a2 sin θ cos θ) dz dθ, using (6).
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This last step is essential, since the dz and dθ tell us the surface integral will be calculated
in terms of z and θ, and therefore the integrand must use these variables also. We can now
calculate the flux through S:

∫ ∫

S

F · n dS =

∫ π/2

0

∫ h

0

(az cos θ + a2 sin θ cos θ) dz dθ

inner integral =
ah2

2
cos θ + a2h sin θ cos θ

outer integral =

[

ah2

2
sin θ + a2h

sin2 θ

2

]π/2

0

=
ah

2
(a+ h) .

Example 2. Find the flux of F = xz i + yz j + z2 k outward through that part of the
sphere x2 + y2 + z2 = a2 lying in the first octant (x, y, z,≥ 0).

Solution. Once again, we begin by finding n and dS for the sphere. We take the
outside of the sphere as the positive side, so n points radially outward from the origin; we
see by inspection therefore that

(8) n =
x i + y j + z k

a
,

where we have divided by a to make n a unit vector.

To do the integration, we use spherical coordinates ρ, φ, θ. On the surface of the sphere,
ρ = a, so the coordinates are just the two angles φ and θ. The area element dS is most
easily found using the volume element:

dV = ρ2 sinφ dρ dφ dθ = dS · dρ = area · thickness

so that dividing by the thickness dρ and setting ρ = a, we get

(9) dS = a2 sinφ dφ dθ.

a sin φ

dS

a

a

a

a dφ
asin φ dθφ

d θ

Finally since the area element dS is expressed in terms of φ and θ, the integration will
be done using these variables, which means we need to express x, y, z in terms of φ and θ.
We use the formulas expressing Cartesian in terms of spherical coordinates (setting ρ = a
since (x, y, z) is on the sphere):

(10) x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ .

We can now calculate the flux integral (3). By (8) and (9), the integrand is

F · n dS =
1

a
(x2z + y2z + z2z) · a2 sinφ dφ dθ .

Using (10), and noting that x2 + y2 + z2 = a2, the integral becomes

∫ ∫

S

F · n dS = a4
∫ π/2

0

∫ π/2

0

cosφ sinφ dφ dθ

= a4
π

2

1

2
sin2 φ

]π/2

0

=
πa4

4
.
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3. Flux through general surfaces.

For a general surface, we will use xyz-coordinates. It turns out that here it is simpler
to calculate the infinitesimal vector dS = n dS directly, rather than calculate n and dS
separately and multiply them, as we did in the previous section. Below are the two standard
forms for the equation of a surface, and the corresponding expressions for dS. In the first
we use z both for the dependent variable and the function which gives its dependence on x
and y; you can use f(x, y) for the function if you prefer, but that’s one more letter to keep
track of.

z = z(x, y), dS = (−zx i − zy j + k ) dx dy (n points “up”)(11a)

F (x, y, z) = c, dS = ±∇F

Fz
dx dy (choose the right sign);(11b)

Derivation of formulas for dS.

z=z (x,y)

R

S

dx

dS

dy

Refer to the pictures at the right. The surface S lies over its projection R,
a region in the xy-plane. We divide up R into infinitesimal rectangles having
area dx dy and sides parallel to the xy-axes — one of these is shown. Over it
lies a piece dS of the surface, which is approximately a parallelogram, since its
sides are approximately parallel.

The infinitesimal vector dS = n dS we are looking for has

direction: perpendicular to the surface, in the “up” direction;
magnitude: the area dS of the infinitesimal parallelogram.

This shows our infinitesimal vector is the cross-product

dS = A×B

where A and B are the two infinitesimal vectors forming adjacent sides of
the parallelogram. To calculate these vectors, from the definition of the
partial derivative, we have

A

B

dx
dy

n

dS

A

B

dy

dx

f dy

f dx

y

x

A lies over the vector dx i and has slope fx in the i direction, so A = dx i + fx dx k ;
B lies over the vector dy j and has slope fy in the j direction, so B = dy j + fy dy k .

A×B =

∣

∣

∣

∣

∣

∣

i j k

dx 0 fxdx
0 dy fydy

∣

∣

∣

∣

∣

∣

= (−fx i − fy j + k ) dx dy ,

which is (11a).

To get (11b) from (11a), , our surface is given by

(12) F (x, y, z) = c, z = z(x, y)

where the right-hand equation is the result of solving F (x, y, z) = c for z in terms of the
independent variables x and y. We differentiate the left-hand equation in (12) with respect
to the independent variables x and y, using the chain rule and remembering that z = z(x, y):

F (x, y, z) = c ⇒ Fx
∂x

∂x
+ Fy

∂y

∂x
+ Fz

∂z

∂x
= 0 ⇒ Fx + Fz

∂z

∂x
= 0
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from which we get

∂z

∂x
= −Fx

Fz
, and similarly,

∂z

∂y
= −Fy

Fz
.

Therefore by (11a),

dS =

(

−∂z

∂x
i − ∂z

∂y
j + 1

)

dx dy =

(

Fx

Fz
i +

Fy

Fz
j + 1

)

dx dy =
∇F

Fz
dx dy ,

which is (11b).

Example 3. The portion of the plane 2x − 2y + z = 1 lying in the first octant forms a
triangle S. Find the flux of F = x i + y j + z k through S; take the positive side of S as the
one where the normal points “up”.

Solution. Writing the plane in the form z = 1− 2x+ 2y, we get using (11a),

dS = (2 i − 2 j + k ) dx dy , so
∫ ∫

S

F · dS =

∫ ∫

S

(2x− 2y + z) dy dx

=

∫ ∫

R

(

2x− 2y + (1− 2x+ 2y)
)

dy dx ,

R

y
1/2 x

1/2

where R is the region in the xy-plane over which S lies. (Note that since the integration
is to be in terms of x and y, we had to express z in terms of x and y for this last step.)
To see what R is explicitly, the plane intersects the three coordinate axes respectively at
x = 1/2, y = −1/2, z = 1 . So R is the region pictured; our integral has integrand 1, so its
value is the area of R, which is 1/8.

Remark. When we write z = f(x, y) or z = z(x, y), we are agreeing to parametrize
our surface using x and y as parameters. Thus the flux integral will be reduced to a double
integral over a region R in the xy-plane, involving only x and y. Therefore you must get rid
of z by using the relation z = z(x, y) after you have calculated the flux integral using (11a).
Then determine the region R (the projection of S onto the xy-plane), and supply the limits
for the iterated integral over R.

Example 4. Set up a double integral in the xy-plane which gives the flux of the field
F = x i + y j + z k through that portion of the ellipsoid 4x2 + y2 + 4z2 = 4 lying in the
first octant; take n in the “up” direction.

Solution. Using (11b), we have dS =
〈8x, 2y, 8z〉

8z
dx dy. Therefore

∫ ∫

S

F · dS =

∫ ∫

S

8x2 + 2y2 + 8z2

8z
dx dy =

∫ ∫

S

1

z
dx dy =

∫ ∫

R

dx dy
√

1− x2 − (y/2)2
,

where R is the portion of the ellipse 4x2 + y2 = 4 lying the the first quadrant.

The double integral would be most simply evaluated by making the change of variable
u = y/2, which would convert it to a double integral over a quarter circle in the xu-plane
easily evaluated by a change to polar coordinates.
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4. General surface integrals.* The surface integral

∫ ∫

S

f(x, y, z) dS that we

introduced at the beginning can be used to calculate things other than flux.

a) Surface area. We let the function f(x, y, z) = 1 . Then the area of S =

∫ ∫

S

dS .

b) Mass, moments, charge. If S is a thin shell of material, of uniform thickness, and
with density (in gms/unit area) given by δ(x, y, z), then

mass of S =

∫ ∫

S

δ(x, y, z) dS,(13)

x-component of center of mass = x =
1

mass S

∫ ∫

S

x · δ dS(14)

with the y- and z-components of the center of mass defined similarly. If δ(x, y, z) represents
an electric charge density, then the surface integral (13) will give the total charge on S.

c) Average value. The average value of a function f(x, y, z) over the surface S can be
calculated by a surface integral:

(15) average value of f on S =
1

area S

∫ ∫

S

f(x, y, z) dS .

Calculating general surface integrals; finding dS.
To evaluate general surface integrals we need to know dS for the surface. For a sphere

or cylinder, we can use the methods in section 2 of this chapter.

Example 5. Find the average distance along the earth of the points in the northern
hemisphere from the North Pole. (Assume the earth is a sphere of radius a.)

Solution. — We use (15) and spherical coordinates, choosing the coordi-
nates so the North Pole is at z = a on the z-axis. The distance of the point
(a, φ, θ) from (a, 0, 0) is aφ, measured along the great circle, i.e., the longi-
tude line — see the picture). We want to find the average of this function
over the upper hemisphere S. Integrating, and using (9), we get

a P
φ

aφ

∫ ∫

S

aφ dS =

∫

2π

0

∫ π/2

0

aφa2 sinφ dφ dθ = 2πa3
∫ π/2

0

φ sinφ dφ = 2πa3 .

(The last integral used integration by parts.) Since the area of S = 2πa2, we get using (15)
the striking answer: average distance = a .

For more general surfaces given in xyz-coordinates, since dS = n dS, the area element
dS is the magnitude of dS. Using (11a) and (11b), this tells us

z = z(x, y), dS =
√

z2x + z2y + 1 dx dy(16a)

F (x, y, z) = c, dS =
|∇F |
|Fz|

dx dy(16b)

Example 6. The area of the piece S of z = xy lying over the unit circle R in the xy-plane
is calculated by (a) above and (16a) to be:
∫ ∫

S

dS =

∫ ∫

R

√

y2 + x2 + 1 dx dy =

∫

2π

0

∫

1

0

√

r2 + 1 r dr dθ = 2π·1
3
(r2+1)3/2

]1

0

=
2π

3
(2
√
2−1).

Exercises: Section 6B
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