
V6. Multiply-connected
Regions; Topology

In Section V5, we called a region D of the plane simply-connected if it had no holes in it.
This is a typical example of what would be called in mathematics a topological property, that
is, a property that can be described without using measurement. For a curve, such properties
as having length 3, or being a circle, or a line, or a triangle — these are not topological
properties, since they involve measurement, whereas the property of being closed, or of
intersecting itself once, would be topological.

The important thing about topological properties is that they are preserved when the
geometric figure is deformed continuously without adding or subtracting points, whereas
non-topological properties change under such a deformation. For example, if you deform a
circle, it will not stay a circle, but it will still remain a closed curve that does not intersect
itself.

Topology is that branch of mathematics which studies topological properties of geomet-
rical figures; it’s a kind of geometry, but at the opposite pole from Euclidean geometry,
which emphasizes measurement (“congruent triangles” “right angles”, “circles”). Topology
is a large and active branch of mathematics today, one which is attracting attention from
other disciplines, like theoretical physics and molecular biology. Most students have never
heard of it, because topological properties don’t enter very often into the first few years
of mathematics. However, they do right here, and in fact it was just in the study of the
possible values of a line integral around a closed curve that the central ideas of modern
topology first entered into mathematics, in the middle of the 1800’s.

So let F be a continuously differentiable vector field in a multiply-connected — i.e., not
simply-connected — region D of the xy-plane, and suppose curl F = 0. What values can∮
C
F · dr have?

We begin by considering an earlier example (Section V2, Example 2) in greater detail,
because it gives the key to the general case. Consider the vector field representing the
electromagnetic field of a wire along the z-axis carrying a constant current:

(1) F =
−y i + x j

r2
;

we know that curl F = 0 (see the cited Example.)

To evaluate
∮
C
F ·dr, where C does not pass through the origin, we use polar coordinates

and t as parameter:

(2) x = r cos θ, y = r sin θ, r = r(t), θ = θ(t) .

As you move around C, the polar angle θ must vary continuously; thus we allow it to take
on all values, and do not restrict it to lie in the interval [0, 2π]. Using (2) and the chain rule
for several variables, we get

dx = xrdr + xθdθ = cos θ dr − r sin θ dθ

dy = sin θ dr + r cos θ dθ ;
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We calculate the line integral as usual; everything cancels, and we get

∮
C

F · dr =

∮
C

−y dx+ x dy

r2
=

∮
C

dθ =

∫ t1

t0

dθ

dt
dt = θ(t1)− θ(t0) .(3)

= 2πn,(4)

the net change in polar angle θ as you move around C — since C is closed, this must be an
integer multiple n of 2π. It is called the winding number of C around the origin.

By way of illustration, the value of the winding number n is given for a few closed curves
C below; the origin is indicated by a dot, and it’s understood that as t runs from t0 to t1,
the curve C is traced out just once, in the direction shown.

1
0-1 2 -3

Intuitively, the winding number is the total number of times that C goes around the
origin, counting +1 each time it goes around counterclockwise, and −1 when it goes around
clockwise. The winding number of C around any other point not on C is defined the same
way, by taking the point to be the origin of a polar coordinate system.

The winding number about the origin (or around any given point) is a topological property
of the oriented curve C, since if C is deformed continuously without ever crossing the point,
the winding numbers must also vary continuously, but the only way an integer can vary
continuously is to always stay the same.

Here is a simple way of finding the winding number of C around the origin: the winding
number is the total number of times that C crosses the positive x-axis, counting +1 each
time C crosses from below, and −1 each time it crosses from above.

Instead of the positive x-axis, you can use any directed ray from the origin,
counting +1 when C crosses the ray in the countercloswise direction, and −1
when it crosses in the clockwise direction.

Example 1. For the curve shown, and the three choices of ray given,
calculate the winding number using each in turn, and find

∮
C
F · dr.

n=-1

Solution. Each ray gives n = −1 as the winding number. Thus
∮
C
F · dr = −2π,

according to (4) above.

So far, we have shown by explicit calculation for the particular field F given by (1), the
value of

∮
C
F · dr depends only on the winding number of C around the origin. We now

consider the general situation.

Let F be a vector field which is continuously differentiable in a region D, and assume
that curl F = 0 in D. We will show now that the value of

∮
C
F · dr depends only on the

topological properties of C, and not on its exact position or length.

To see this, we will assume that D consists of one connected region having k holes. The
holes come from removing portions of the region — we might remove a point, a line segment,
the interior of a circle, the letter Y, etc. We could not remove a circle, however, since then
what was left would not be one connected piece.
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Draw a simple closed curve C1, directed counterclockwise, around the i-th hole, and let

Ai =

∮
C1

F · dr.

Then for any closed curve C in the region, we claim that

(6)

∮
C

F · dr = n1A1 + . . .+ nkAk, ni integers,

D

C C C
1 2 3

where ni is the winding number of C around the i-th hole (i.e., the winding number of C
around any point inside that i-th hole).

We shall indicate how the argument goes in a few cases; the general case would take
us farther into topology than we are able to go at present. The essential tool is Green’s
theorem.

Example 2. Suppose C is a path like the one pictured (k = 3 in the picture, but this
isn’t significant.) Let C ′

i be the curve Ci with its direction reversed. Then F is continuously
differentiable in the region between C and the C ′

i, and also curl F = 0. Therefore by the
extended form of Green’s theorem (Section V5), we get

∮
C

F · dr +

∮
C′

1

F · dr + . . . +

∮
C′

k

F · dr = 0, so that

∮
C

F · dr = A1 + . . .+ Ak,

proving (6) in this case.
C C C

C

1 2
3

Example 3. If there is just one hole, Example 2 shows that for any simple closed curve
going counterclockwise around the hole,∮

C

F · dr = A1 .

(In the first example (4) discussed, A1 = 2π.) C = C + C1 2

Suppose now that C is a closed curve going around twice, as in the illustration. Break
C into the sum of two simple closed curves as shown, using a point where it crosses itself;
then ∮

C

F · dr =

∮
C1

F · dr +

∮
C2

F · dr = 2A1.

Example 4. This example combines the two above. If C is as shown (here k = 2), then
C = D1 + D2; let D′

i be Di with the direction reversed. Then D1 + D′

2 is a simple curve
having only hole number 1 in its interior. Therefore∮
D1

F · dr+

∮
D′

2

F · dr = A1,

∮
D2

F · dr = A2, so that

∮
C

F · dr = A1+2A2.

One final remark. If F is as above, with curl F = 0, and we try
to find a function f(x, y) for which F = ∆f , by defining

(7) f(x, y) =

∫ (x,y)

(a,b)

F · dr ,

D2

D1

C
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this won’t work because the value of f(x, y) depends not just on (x, y) but also on the
path of integration used. However, equation (6) shows that two different values for the line
integfral always differ by a number of the form n1A1+ . . .+nkAk, because if C1 and C2 are
two different choices of path from (a, b) to (x, y), then C1 + C ′

2 is a closed path, and thus

∫
C1

F · dr +

∫
C′

2

F · dr = n1A1 + . . .+ nkAk .

Here ni is the winding number of the path C1 + C ′

2 around the i-th hole.
Therefore

(a,b)

(x,y)C

CC 2

C 2

1

1

(8)

∮
C

F · dr =

∮
C

F · dr + n1A1 + . . .+ nkAk .

Now if (x, y) is moved a little, and the paths C1 and C2 are moved accordingly, the numbers
n1, . . . , nk will not change since they are winding numbers. Thus, even though the function
f(x, y) defined by (7) is multiple-valued, according to (8) the different determinations of its
value differ by a constant, and therefore all have the same derivative. Thus we can claim
that the multiple-valued function f(x, y) is differentiable, and

F = ∇f(x, y) .

Our conclusion is that, if curl F = 0 in a multiply-connected region, even if the field is not
conservative we can still view it as the gradient field of a multiple-valued function f(x, y).

For example, going back to our first significant example, equation (3) shows that we may
take f(x, y) = θ(x, y), the multiple-valued polar angle. No matter which determination of θ
you pick, it is still true that for some n,

θ = tan−1 y

x
+ 2nπ, and

∇θ =
−y i + x j

r2
.

Exercises: Section 4H
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