
V15. Relation to Physics

The three theorems we have studied: the divergence theorem and Stokes’ theorem in
space, and Green’s theorem in the plane (which is really just a special case of Stokes’ theo-
rem) are widely used in physics and continuum mechanics, in the study of fields, potentials,
heat flow, wave motion in liquids, gases, and solids, and thermodynamics, to name some of
the uses. Often partial differential equations which model some physical situation are de-
rived using the vector integral calculus theorems. This section is devoted to a brief account
of where you will first meet the theorems: in electromagnetic theory.

1. Symbolic notation: the del operator

To have a compact notation, wide use is made of the symbolic operator “del” (some call
it “nabla”):

(1) ∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

Recall that the “product” of
∂

∂x
and the function M(x, y, z) is understood to be

∂M

∂x
. Then

we have

(2) grad f = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

The divergence is sort of a symbolic scalar product: if F = M i +N j + P k ,

(3) div F = ∇ · F =
∂M

∂x
+

∂N

∂y
+

∂P

∂z

while the curl, as we have noted, as a symbolic cross-product:

curl F = ∇× F =

∣

∣

∣

∣

∣

∣

i j k
∂
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∂
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∂
∂z

M N P

∣

∣

∣

∣

∣

∣

.

Notice how this notation reminds you that ∇·F is a scalar function, while ∇×F is a vector
function.

We may also speak of the Laplace operator (also called the “Laplacian”), defined by

(5) lap f = ∇2f = (∇ · ∇) f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

Thus, Laplace’s equation may be written: ∇2f = 0. (This is for example the equation
satisfied by the potential function for an electrostatic field, in any region of space where
there are no charges; or for a gravitational field, in a region of space where there are no
masses.)
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In this notation, the divergence theorem and Stokes’ theorem are respectively

(6)

∫ ∫

S

F · dS =

∫∫∫

D

∇ · F dV

∮

C

F · dr =

∫ ∫

S

∇× F · dS

Two important relations involving the symbolic operator are:

curl (grad f) = 0 div curl F = 0(7)

∇×∇ f = 0 ∇ · ∇ × F = 0(7′)

The first we have proved (it was part of the criterion for gradient fields); the second is an
easy exercise. Note however how the symbolic notation suggests the answer, since we know
that for any vector A, we have

A×A = 0, A ·A× F = 0 ,

and (7′) says this is true for the symbolic vector ∇ as well.

2. Application to Maxwell’s equations.

Each of Maxwell’s equations in electromagnetic theory can be written in two equivalent
forms: a differential form which involves only partial derivatives, and an integrated form
involving line, surface, and other multiple integrals.

In a sense we have already seen this with our criterion for conservative fields; we assume
F is continuously differentiable in all of 3-space. Then the integrated form of the criterion
is on the left, and the differential form is on the right:

∮

C

F · dr = 0 for all closed C ⇔ curl F = 0 for all x, y, z .

And we know that it is Stokes’ theorem which provides the bridge between these two equiv-
alent forms of the criterion.

The situation with respect to Maxwell’s equations is similar. We consider here two of
them, as typical.

Gauss-Coulomb Law. Let E be an electrostatic field, arising from a distribution in space
of positive and negative electric charge. Then the Gauss-Coulomb Law may be written in
either of the two forms

∇ ·E = 4πρ, ρ = charge density; (differential form)(8)
∫ ∫

S

E · dS = 4πQ, Q = total net charge inside S. (integrated form)(8′)

These are two equivalent statements of the same physical law. The integrated form is
perhaps a little easier to understand, since the left hand side is the flux of E through S, which
is a more intuitive idea than div E. On the other hand, quite a lot of technique is required
actually to calculate the flux, whereas very little is needed to calculate the divergence.

Neither (8) nor (8′) is mathematics — both are empirically established laws of physics.
But their equivalence is a purely mathematical statement that can be proved by using the
divergence theorem.
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Proof that (8) ⇒ (8′).

Let D be the interior of the closed surface S. Then

∫ ∫

S

E · dS =

∫∫∫

D

∇ ·E dV by the divergence theorem;

= 4π

∫∫∫

D

ρ dV by (8)

= 4πQ , by definition of ρ and Q.

Proof that (8′) ⇒ (8).

We reason by contraposition: that is, we show that if (8) is false, then (8′) must also be
false.

If (8) is false, this means that we can find some point P0 : (x0, y0, z0) where E is defined
and such that ∇ ·E 6= 4πρ at P0; we write this inequality as

∇ ·E− 4πρ 6= 0, at P0.

Say the quantity on the left is positive at P0. Then by continuity, it is also positive in the
interior of a small sphere S0 centered at P0; call this interior B0. Then

∫∫∫

B0

(∇ ·E− 4πρ) dV > 0 ,

which we write

∫∫∫

B0

∇ ·E dV > 4π

∫∫∫

B0

ρ dV.

The integral on the right gives the total net charge Q0 inside S0; applying the divergence
theorem to the integral on the left, we get

∫ ∫

S0

E · dS > 4πQ0

which shows that (8′) is also false, since it fails for S0. �

Faraday’s Law A changing magnetic field B(x, y, z; t) produces an electric field E. The
relation between the two fields is given by Faraday’s law, which can be stated (in suitable
units) in two equivalent forms (c is the velocity of light):

∇×E = −
1

c

∂B

∂t
differential form(9)

∮

C

E · dr = −
1

c

d

dt

∫ ∫

S

B · dS integrated form(9′)
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As before, it is the integrated form which is more intuitive, though harder to calculate. The
line integral on the left is called the electromotive force around the closed loop C; Faraday’s
law (9′) relates it to the magnetic flux through any surface S spanning the loop C.

A few comments on the two forms. The derivative in (9) is taken by just differentiating
each component of B with respect to the time t. It is a partial derivative, since the com-
ponents of B are also functions of x, y, z. In (9′) on the other hand we have an ordinary
derivative, since after the integration, the flux is a function of t alone.

It is understood in physics that on S the positive direction for flux and the positive
direction on C must be compatibly chosen.

The magnetic flux through S is the same for all surfaces S spanning the loop C. (This
is a consequence of the physical law ∇ ·B = 0.) As a result, one speaks simply of “the flux
through the loop C”, meaning the flux through any surface spanning C, i.e. having C as
its boundary.

Once again, though (9) and (9′) both express the same physical law, the equivalence
between them is a mathematical statement; to prove it we use Stokes’ theorem.

Proof that (9) ⇒ (9′),
∮

C

E · dr =

∫ ∫

S

∇×E · dS, by Stokes’ theorem,

= −
1

c

∫ ∫

S

∂B

∂t
· dS, by (9)

= −
1

c

d

dt

∫ ∫

S

B · dS ,

if B has a continuous derivative and S is smooth, and finite in extent and in area. (This
last equality is fairly subtle, and is taken up in theoretical advanced calculus courses.) �

Proof that (9′) ⇒ (9). We show that if (9) is false, then (9′) is false:

If (9) is false, this means that at some point P0, ∇×E 6= −
1

c

∂B

∂t
; we write this

(10) ∇×E +
1

c

∂B

∂t
6= 0.

This means that at least one of the components of this vector is not 0 at P0;
say it is the i -component, and it’s positive. Then by continuity it will remain
positive in a small ball around P0. Inside this little ball, draw a little disc
S0 as shown with center at P0, having normal vector i ; orient its circular
boundary C0 compatibly.

i

S0

P0

C0

Since the vector on the left in (10) has a positive i -component on S0,

∫ ∫

S0

(

∇×E +
1

c

∂B

∂t

)

· dS > 0,

which we may write

∫ ∫

S0

∇×E · dS > −
1

c

∫ ∫

S0

∂B

∂t
· dS;
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applying Stokes’ theorem to the left-hand side, and interchanging the order of differentiation
and integration on the right (this is valid under the reasonable hypotheses we stated before),
we get

∮

C

E · dr > −
1

c

d

dt

∫ ∫

S

B · dS,

which shows the integrated form (9′) is false for this little circle and disc, and therefore not
true in general. �
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3. Harmonic functions in space.

A harmonic function in space is by definition a function f(x, y, z) which satisfies Laplace’s
equation ∇2f = 0, or written out (see (5)):

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 0 .

For example, the potential function for an electrostatic field E is harmonic in any region of
space which is free of electrostatic charge. Similarly, the potential function for a gravitational
field F is harmonic in any region where there is no mass. These statements are mathematical
consequences of physical laws, and therefore are also physical laws — i.e., experimental facts,
not mathematical facts.

To see why the potential function for E is harmonic, suppose we are in a simply-connected
region of space where there is no charge. We then have

Gauss-Coulomb law ∇ ·E = 0 since ρ = 0 in the region

Faraday’s law ∇×E = 0;

the second equation is valid since the field arises from a distribution of static electric charges
— there is no changing magnetic field. Faraday’s law shows that E is conservative, so that
it has a (mathematical) potential function f(x, y, z); the physical potential function would
be −f(x, y, z). By the Gauss-Coulomb law, noting that E = ∇f , we get

∇ ·E = ∇ · ∇f = 0, or ∇2f = 0,

showing that f(x, y, z) is a harmonic function.

Because harmonic functions can represent potential functions, there is great interest in
finding harmonic functions in a region D of space. Typically, one prescribes the values that
f(x, y, z) should have on the boundary of D, and then searches analytically (or numerically
by computer) for the values of f(x, y, z) inside D. In this work, the divergence theorem
gives an important theoretical tool; some of the Exercises use it to explore the situation a
little further.

In general, this aspect of the subject properly belongs to the realm of partial differential
equations, i.e., to Differential Equations and Advanced Calculus courses: see you there,
maybe.

Exercises: Section 6H
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