
SD. Second Derivative Test

1. The Second Derivative Test

We begin by recalling the situation for twice differentiable functions f(x) of one variable.
To find their local (or “relative”) maxima and minima, we

1. find the critical points, i.e., the solutions of f ′(x) = 0;
2. apply the second derivative test to each critical point x0:

f ′′(x0) > 0 ⇒ x0 is a local minimum point;
f ′′(x0) < 0 ⇒ x0 is a local maximum point.

The idea behind it is: at x0 the slope f ′(x0) = 0; if f ′′(x0) > 0, then f ′(x) is strictly
increasing for x near x0, so that the slope is negative to the left of x0 and positive to the
right, which shows that x0 is a minimum point. The reasoning for the maximum point is
similar.

If f ′′(x0) = 0, the test fails and one has to investigate further, by taking more derivatives,
or getting more information about the graph. Besides being a maximum or minimum, such
a point could also be a horizontal point of inflection.

The analogous test for maxima and minima of functions of two variables f(x, y) is a
little more complicated, since there are several equations to satisfy, several derivatives to be
taken into account, and another important geometric possibility for a critical point, namely
a saddle point. This is a local minimax point; around such a point the graph of f(x, y)
looks like the central part of a saddle, or the region around the highest point of a mountain
pass. In the neighborhood of a saddle point, the graph of the function lies both above and
below its horizontal tangent plane at the point. (Your textbook has illustrations.)

The second-derivative test for maxima, minima, and saddle points has two steps.

1. Find the critical points by solving the simultaneous equations

{

fx(x, y) = 0,

fy(x, y) = 0.

Since a critical point (x0, y0) is a solution to both equations, both partial derivatives are
zero there, so that the tangent plane to the graph of f(x, y) is horizontal.

2. To test such a point to see if it is a local maximum or minimum point, we calculate
the three second derivatives at the point (we use subscript 0 to denote evaluation at (x0, y0),
so for example (f)0 = f(x0, y0)), and denote the values by A,B, and C:

(1) A = (fxx)0, B = (fxy)0 = (fyx)0, C = (fyy)0,

(we are assuming the derivatives exist and are continuous).

Second-derivative test. Let (x0, y0) be a critical point of f(x, y), and A, B, and C

be as in (1). Then

AC −B2 > 0, A > 0 or C > 0 ⇒ (x0, y0) is a minimum point;

AC −B2 > 0, A < 0 or C < 0 ⇒ (x0, y0) is a maximum point;

AC −B2 < 0 ⇒ (x0, y0) is a saddle point.
0



SD. SECOND DERIVATIVE TEST 1

If AC −B2 = 0, the test fails and more investigation is needed.
Note that if AC −B2 > 0, then AC > 0, so that A and C must have the same sign.

Example 1. Find the critical points of w = 12x2 + y3 − 12xy and determine their type.

Solution. We calculate the partial derivatives easily:

(2)
wx = 24x− 12y

wy = 3y2 − 12x

A = wxx = 24

B = wxy = −12

C = wyy = 6y

To find the critical points we solve simultaneously the equations wx = 0 and wy = 0; we get

wx = 0

wy = 0
⇒

y = 2x

y2 = 4x
⇒ 4x2 = 4x ⇒ x = 0, 1 ⇒

(x, y) = (0, 0)

(x, y) = (1, 2)
.

Thus there are two critical points: (0, 0) and (1, 2). To determine their type, we use the
second derivative test: we have AC −B2 = 144y − 144, so that

at (0, 0), we have AC −B2 = −144, so it is a saddle point;
at (1, 2), we have AC − B2 = 144 and A > 0, so it is a a

minimum point.

A plot of the level curves is given at the right, which con-
firms the above. Note that the behavior of the level curves
near the origin can be determined by using the approximation
w ≈ 12x2 − 12xy; this shows the level curves near (0, 0) look
like those of the function x(x − y): the family of hyperbolas
x(x − y) = c, with asymptotes given by the degenerate hyper-
bola x(x − y) = 0, i.e., the pair of lines x = 0 (the y-axis) and
x− y = 0 (the diagonal line y = x).
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The test involves the quantity AC − B2. In general, whenever we see the expressions
B2− 4AC or B2−AC or their negatives, it means the quadratic formula is involved, in one
of its two forms (the second is often used to get rid of the excess two’s):

Ax2 +Bx+ C = 0 ⇒ x =
−B ±

√
B2 − 4AC

2A
(3)

Ax2 + 2Bx+ C = 0 ⇒ x =
−B ±

√
B2 −AC

A
(4)

This is what is happening here. We want to know whether, near a critical point P0, the
graph of our function w = f(x, y) always stays on one side of its horizontal tangent plane
(P0 is then a maximum or minimum point), or whether it lies partly above and partly below
the tangent plane (P0 is then a saddle point). As we will see, this is determined by how the
graph of a quadratic function f(x) lies with respect to the x-axis. Here is the basic lemma.

Lemma. For the quadratic function Ax2 + 2Bx+ C,

AC −B2 > 0, A > 0 or C > 0 ⇒ Ax2 + 2Bx+ C > 0 for all x;(5)

AC −B2 > 0, A < 0 or C < 0 ⇒ Ax2 + 2Bx+ C < 0 for all x;(6)

AC −B2 < 0 ⇒
{

Ax2 + 2Bx+ C > 0, for some x;

Ax2 + 2Bx+ C < 0, for some x.
(7)
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Proof of the Lemma. To prove (5), we note that the quadratic formula in the form (4)
shows that the zeros of Ax2 + 2Bx+C are imaginary, i.e., it has no real zeros. Therefore
its graph must lie entirely on one side of the x-axis; which side can be determined from
either A or C, since

A > 0 ⇒ lim
x→∞

Ax2 + 2Bx+ C = ∞; C > 0 ⇒ Ax2 + 2Bx+ C > 0 when x = 0.

If A < 0 or C < 0, the reasoning is analogous and proves (6).

If on the other hand AC−B2 < 0, formula (4) shows the quadratic function has two real
roots, so that its parabolic graph crosses the x-axis twice, and hence lies partly above and
partly below it. This proves (7). �

Proof of the Second-derivative Test in a special case.

The simplest function is a linear function, w = w0 + ax + by, but it does not in general
have maximum or minimum points and its second derivatives are all zero. The simplest
functions to have interesting critical points are the quadratic functions, which we write in
the form (the 2’s will be explained momentarily):

(8) w = w0 + ax+ by +
1

2
(Ax2 + 2Bxy + Cy2).

Such a function has in general a unique critical point, which we will assume is (0, 0); this
gives the function a special form, which we can determine by evaluating its partial derivatives
at (0, 0):

(9)
(wx)0 = a

(wy)0 = b

wxx = A

wxy = B

wyy = C

(The neat look of the above explains the 1
2 and 2B in (8).) Since (0, 0) is a critical point,

(9) shows that a = 0 and b = 0, so our quadratic function has the form

(10) w − w0 =
1

2
(Ax2 + 2Bxy + Cy2).

We moved w0 to the left side since the tangent plane at (0, 0) is the horizontal plane w = w0,
and we are interested in whether the graph of the quadratic function lies above or below
this tangent plane, i.e., whether w − w0 > 0 or w − w0 < 0 at points other than the origin.

If (x, y) 6= (0, 0), then either x 6= 0 or y 6= 0; say y 6= 0. Then we write (10) as

(11) w − w0 =
y2

2

[

A

(

x

y

)2

+ 2B

(

x

y

)

+ C

]

We know that y2 > 0 if y 6= 0; applying our previous lemma to the factor on the right of
(11), (or if y = 0, switching the roles of x and y in (11) and applying the lemma), we get

AC −B2 > 0, A > 0 or C > 0 ⇒ w − w0 > 0 for all (x, y) 6= (0, 0);

⇒ (0, 0) is a minimum point;

AC −B2 > 0, A < 0 or C < 0 ⇒ w − w0 < 0 for all (x, y) 6= (0, 0);

⇒ (0, 0) is a maximum point;

AC −B2 < 0 ⇒
{

w − w0 > 0, for some (x, y);

w − w0 < 0, for some (x, y);

⇒ (0, 0) is a saddle point.



SD. SECOND DERIVATIVE TEST 3

Argument for the Second-derivative Test for a general function.

This part won’t be rigorous, only suggestive, but it will give the right idea.

We consider a general function w = f(x, y), and assume it has a critical point at (x0, y0),
and continuous second derivatives in the neighborhood of the critical point. Then by a
generalization of Taylor’s formula to functions of several variables, the function has a best
quadratic approximation at the critical point. To simplify the notation, we will move the
critical point to the origin by making the change of variables

u = x− x0, v = y − y0.

Then the best quadratic approximation is (if the x, y on the left and u, v on the right is
upsetting, just imagine u and v replaced everywhere by x− x0 and y − y0):

(13) w = f(x, y) ≈ w0 +
1

2

(

Au2 + 2Buv + Cv2
)

;

here the coefficients A,B,C are given as in (1) by the second partial derivatives with respect
to u and v at (0, 0), or what is the same (according to the chain rule—see the footnote below),
by the second partial derivatives with respect to x and y at (x0, y0).

(Intuitively, one can see the coefficients have these values by differentiating
both sides of (13) and pretending the approximation is an equality. There are no
linear terms in u and v on the right since (0, 0) is a critical point.)

Since the quadratic function on the right of (13) is the best approximation to w = f(x, y)
for (x, y) close to (x0, y0), it is reasonable to suppose that their graphs are essentially the
same near (x0, y0), so that if the quadratic function has a maximum, minimum or saddle
point there, so will f(x, y). Thus our results for the special case of a quadratic function
having the origin as critical point carry over to the general function f(x, y) at a critical
point (x0, y0), if we interpret A, B, C as the second partial derivatives at (x0, y0).

This is what the second derivative test says. �

Exercises: Section 2H

Footnote: Using u = x − x0 and v = y − y0, we can apply the chain rule for partial
derivatives, which tells us that for all x, y and the corresponding u, v, we have

wx = wu

∂u

∂x
+ wv

∂v

∂x
= wu, since ux = 1 and vx = 0,

and similarly, wy = wv. Therefore at the corresponding points,

(wx)(x0,y0) = (wu)(0,0), (wy)(x0,y0) = (wv)(0,0),

and differentiating once more and using the same reasoning,

(wxx)(x0,y0) = (wuu)(0,0), (wxy)(x0,y0) = (wuv)(0,0), (wyy)(x0,y0) = (wvv)(0,0).
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