
NON-INDEPENDENT VARIABLES

1. Introduction

Up to now, we have considered partial derivatives of n-variable functions defined on all of

Rn or on an n-dimensional subset defined by inequalities (for example, the orthant defined

by x1, . . . , xn > 0). In such a situation, the variables are free to change independently, and

in particular it makes sense to vary one variable while holding all the others constant.

But if a function is defined only on a subset defined by constraint equations, such as the

unit sphere x2 + y2 + z2 = 1, then it might be impossible to vary one variable while holding

the others constant. In such a situation, extra care is needed in defining partial derivatives

and working with them.

2. Constraint equations

Part of the specification of a function is its domain, the set of inputs on which it is being

considered.

Example 2.1. A meteorologist studying the current world temperature is probably not

interested in the temperature in deep outer space, and hence would be more likely to model

temperature as a function defined on the sphere x2+y2+z2 = 1 instead of a function defined

on all of R3. In this case, the domain is the sphere x2 + y2 + z2 = 1, and x2 + y2 + z2 = 1 is

called a constraint equation.

Example 2.2. The pressure P , volume V , and temperature T of a fixed amount of gas satisfy

the ideal gas law PV = nRT , where n and R are constants (here n is the amount of gas

measured in moles, and R is a universal constant). A thermodynamic quantity expressible in

terms of P , V , and T (such as internal energy U or entropy S) is represented mathematically

as a function whose domain is the set of points in the 3-dimensional (P, V, T )-space satisfying

the constraint equation PV = nRT and the constraint inequalities P, V, T > 0; this domain

is a 2-dimensional surface inside the first orthant of R3. The state of the gas at a particular

time is given by the numerical values of (P, V, T ) then; mathematically, a state is just a point

in the domain. In thermodynamics, the domain is also called the state space because it is

the set of all physically possible states.
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3. Constraint equations and dimension

Although the sphere x2 + y2 + z2 = 1 is contained in 3-dimensional space, it is really a

2-dimensional object, with surface area, not volume (the interior is not included).

Rule of thumb:

Each constraint equation usually reduces the dimension of the domain by 1.

Example 3.1. The space R3 has dimension 3, but the set of points in R3 satisfying the

constraint equation

x + 2y + 3z = 5

is only 2-dimensional (as you know, it’s a plane).

Example 3.2. Similarly, the solution set to the system

x2 + y2 + z2 = 100

x + 2y + 3z = 5

with two constraint equations is only 1-dimensional. (It is the intersection of a sphere and

a plane, and it turns out to be a circle.)

The rule of thumb implies that if the domain is defined by e equations in n variables, it

will usually be (n− e)-dimensional. If e > n (more equations than variables), so that n− e

is negative, usually this means that the constraint equations are inconsistent, so they define

an empty domain.

Warning 3.3. It is not always true that each constraint equation reduces the dimension by 1.

Sometimes the rule of thumb fails because of redundancy in the equations, as in the following

examples.

Example 3.4. The system

x + 2y + 3z = 5

2x + 4y + 6z = 10

has two constraint equations, so one might expect them to reduce the dimension from 3

to 1, but in fact the solution set has dimension 2, because the second equation is just double

the first one, so it contains no new information; it is as if there were only one constraint

equation. (Geometrically, the solution is the intersection of two planes, but the two planes

are the same!)

Sometimes the redundancy is a little more subtle:
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Example 3.5. Usually a system of 3 linear equations in 3 variables has 0-dimensional

solution set (in fact, a single point), but the system

x + y + z = 1

x + 2y + 3z = 5

2x + 3y + 4z = 6

has a 1-dimensional solution set since the third equation is a consequence of the first two (it

is their sum) and hence contains no new information. On the other hand, the system

x + y + z = 1

x + 2y + 3z = 5

2x + 3y + 4z = 7

is inconsistent (no solutions), because the first two equations imply that 2x + 3y + 4z = 6,

making it impossible to satisfy all three equations simultaneously.

Remark 3.6. For a square system of linear equations, redundancy or inconsistency occurs

when the coefficient matrix A satisfies detA = 0. Most square matrices have nonzero

determinant, so most square systems have a 0-dimensional solution set (in fact, we know

that if detA 6= 0, then the solution set to Ax = b consists of a single point, namely A−1b).

4. Constraint inequalities and dimension

What about constraint inequalities? These usually do not affect the dimension. For the

example, the region in R3 defined by x2 + y2 + z2 < 9 is still 3-dimensional (it is the interior

of a ball of radius 3, and has volume).

5. Independent variables

Example 5.1. On the upper half of the circle x2 + y2 = 9 in R2 one can express y in terms

of x, namely

y =
√

9− x2.

Here we think of x as an independent variable, and y depends on x. On the lower half one

would use

y = −
√

9− x2

instead.

Example 5.2. Similarly, on the sphere x2 + y2 + z2 = 1, one can locally express z as a

function of independent variables x and y. (We said “locally” because there is not a single

function that works on the whole sphere: one function works on the upper half, and a

different function on the lower half.)
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In general, for a D-dimensional domain defined by e constraint equations in n variables,

usually D = n − e and locally one can choose D variables to be the independent ones so

that each of the remaining e variables can be expressed as a function of the D independent

variables. In particular,

number of independent variables = dimension of the domain.

The precise mathematical statement along these lines is called the implicit function theorem;

it is discussed in more advanced math courses.

6. Functions on a constrained domain

Consider the function

f(x, y, z) := x2y3z5 restricted to the sphere x2 + y2 + z2 = 1.

Since there is one equation in three variables, and 3 − 1 = 2, the domain should be 2-

dimensional, so we should be able to express f locally in terms of two independent variables.

On the part of the sphere where z > 0, we may choose x and y as independent variables,

so that z =
√

1− x2 − y2 and

(1) f = x2y3(1− x2 − y2)5/2.

The point of eliminating z is that now f is expressed in terms of variables x and y that are

not related by any constraint equation.

Alternatively, on a suitable part of the sphere we could express f in terms of independent

variables y and z, by substituting x =
√

1− y2 − z2:

(2) f = (1− y2 − z2)y3z5.

Formulas (1) and (2) represent (pieces of) the same function, just expressed in terms of

different variables.

7. Derivatives

Question 7.1. Consider the function f(x, y) := xy where (x, y) is constrained to lie on the

line 2x + y = 7. What is
df

dx
at the point (3, 1)?

(We wrote
df

dx
instead of

∂f

∂x
because there is only one independent variable: y depends

on x.)

Incorrect solution: The derivative of xy with respect to x is y, whose value at (3, 1) is 1.

What makes this wrong? It is true that if f(x, y) := xy on R2, then
∂f

∂x
= y. But the

definition of partial derivative assumes that it makes sense to hold y constant while varying

x, which is impossible if (x, y) is required to satisfy the constraint 2x + y = 7.
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Correct solution 1 (elimination of dependent variable): There are two variables and one

constraint equation, and 2 − 1 = 1, so we should be looking to express f in terms of one

independent variable. In fact, we can choose x as the independent variable, which is what

we should do if we are interested in
df

dx
. Now use the constraint equation to eliminate the

dependent variable y and express everything in terms of x:

y = 7− 2x

f = x(7− 2x) = 7x− 2x2

df

dx
= 7− 4x,

and the value of
df

dx
at (x, y) = (3, 1) is 7− 4(3) = −5. 2

In Correct Solution 1, we were lucky that it was easy to solve for y in terms of x. In more

complicated situations, this might not be possible, but one can still determine how quickly y

changes as x changes, by taking the differential of the constraint equation. To see how this

works, let’s solve the same problem again.

Correct solution 2 (differentials): If f = xy is viewed as a function on R2, the definition

of df gives

(3) df = y dx + x dy.

This expresses how f changes as x and y change.

If f is restricted to a function on the domain defined by the constraint equation, then (3)

still holds, but now any change in x causes a change in y, so dx and dy are related. To find

the relation, take the differential of the constraint equation 2x + y = 7; this gives

2 dx + dy = 0

so

dy = −2 dx

(which makes sense since (x, y) is constrained to lie on the line 2x + y = 7 of slope −2). To

compute
df

dx
, we want to consider f as a function of the independent variable x alone, so

we should express df in terms of dx alone. To eliminate the dy term, substitute dy = −2 dx

into (3) to get

df = y dx + x(−2 dx)

= (y − 2x) dx.

This means that
df

dx
= y − 2x.
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At (3, 1), this is 1− 2(3) = −5. 2

8. Partial derivatives

Now let’s consider what happens in a question like Question 7.1 when there is more than

one independent variable.

Question 8.1. Consider the function f(x, y, z) := x+ y + x2z where (x, y, z) is constrained

to lie on the surface xyz = 6. What is
∂f

∂x
at the point (1, 2, 3)?

Answer: In the presence of the constraint equation xyz = 6, the notation
∂f

∂x
is meaning-

less, so the question does not make sense!

Here is why: Usually
∂f

∂x
means the rate of change of f as x varies while all the other

variables are held constant. But we can’t hold both y and z constant while varying x, if we

want the constraint equation xyz = 6 to remain true.

Conclusions:

1. We are allowed to talk about partial derivatives of f only if f is expressed as a function

of independent variables (independence guarantees that we can vary one variable while

holding the others constant).

2. If f is initially expressed in terms of variables satisfying constraint equations, we must

choose some of the variables to be the independent ones, and view f and all other variables

as functions of the independent variables (as in Section 6), before talking about partial

derivatives of f . The notation for the partial derivatives must indicate which variables

are being used as the independent ones.

The notational convention is that all the independent variables are listed at the bottom

of the partial derivative notation, with the variables being held constant listed as subscripts

outside parentheses:

Definition 8.2. The notation (
∂f

∂x

)
y

means that we are viewing f as a function of independent variables x and y, and measuring

the rate of change of f as x varies while holding y constant.

Similarly,

(
∂f

∂x

)
z

means that we are viewing f as a function of independent variables x

and z, and measuring the rate of change of f as x varies while holding z constant.
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Example 8.3 (analogous to Correct Solution 1 in Section 7). In Question 8.1, we can use

the constraint equation to eliminate z and express f in terms of independent variables x and

y:

f = x + y + x2

(
6

xy

)
= x + y +

6x

y
.

Then (
∂f

∂x

)
y

= 1 +
6

y
,

so

(
∂f

∂x

)
y

at (1, 2, 3) is

1 +
6

2
= 4.

Example 8.4 (analogous to Correct Solution 1 in Section 7 again). In Question 8.1, we can

use the constraint equation to eliminate y and express f in terms of independent variables

x and z:

f = x +
6

xz
+ x2z.

Then (
∂f

∂x

)
z

= 1− 6

x2z
+ 2xz,

so

(
∂f

∂x

)
z

at (1, 2, 3) is

1− 6

12(3)
+ 2(1)(3) = 5.

Remark 8.5. The values of

(
∂f

∂x

)
y

and

(
∂f

∂x

)
z

are rates of change as one moves along two

different paths in the domain: along the first path y is constant while z varies in response to

x varying, but along the second path z is constant while y varies in response to x varying.

So it is not surprising that the two values are different.

Remark 8.6. In Question 7.1, there was only one independent variable, namely the variable

x with respect to which the derivative was being taken, so it was not necessary to specify

the independent variables in the notation
df

dx
.

Example 8.7. Suppose that g is a function of variables s, t, u, v related by one constraint

equation. Then usually g would be locally expressible as a function of three independent

variables. Thus one might have partial derivatives such as

(
∂g

∂u

)
t,v

, in which g is viewed as

a function of independent variables t, u, v.
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9. Partial derivatives and differentials

If we cannot solve the constraint equations to eliminate the dependent variables, we can

try the method of differentials.

Question 9.1. Suppose that f(x, y, z) := x + y + x2z, where x, y, z are constrained to lie

on the surface xyz = 6. What is

(
∂f

∂x

)
y

at the point (1, 2, 3)?

This is the same question as in Example 8.3, but this time we are going to answer it using

differentials, in a manner similar to Correct Solution 2 in Section 7.

Solution: To compute

(
∂f

∂x

)
y

, in which the independent variables are x and y, we need

to express df in the form

df =? dx+? dy,

where each ? represents a function; then

(
∂f

∂x

)
y

is the first ? (and

(
∂f

∂y

)
x

is the second ?).

But f is initially given as a function of dependent variables x, y, z. If f = x + y + x2z is

viewed as a function on R3, the definition of df gives

(4) df = (1 + 2xz) dx + dy + x2 dz.

If f is restricted to a function on the domain defined by the constraint equation, then (4)

still holds, but taking the differential of the constraint equation xyz = 6 gives a relation

between dx, dy, dz:

(5) yz dx + xz dy + xy dz = 0.

Because we want df in terms of dx and dy only, we solve (5) for dz,

xy dz = −yz dx− xz dy

dz = −z

x
dx− z

y
dy,

and substitute into (4):

df = (1 + 2xz) dx + dy + x2 dz

= (1 + 2xz) dx + dy + x2

(
−z

x
dx− z

y
dy

)
= (1 + 2xz) dx + dy − xz dx− x2z

y
dy

= (1 + xz) dx +

(
1− x2z

y

)
dy.

8



This means that (
∂f

∂x

)
y

= 1 + xz,

and the value of

(
∂f

∂x

)
y

at (1, 2, 3) is 1 + 1(3) = 4.

10. Proving rules concerning partial derivatives

There are many rules relating different partial derivatives, but they all follow from the

method of differentials, so there is no need to memorize the rules. The purpose of this section

is not to list rules to be memorized, but to give practice in using the method of differentials.

Problem 10.1. The cyclic rule states that if variables x, y, z are related by a constraint

equation such that (as expected) any two of the variables may be taken as the independent

variables, then (
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1.

Prove this rule.

Proof. Let f(x, y, z) = 0 be the constraint equation, where f is a function that makes sense

on R3. Taking the differential of the constraint equation gives

fx dx + fy dy + fz dz = 0,

where fx, fy, fz are the partial derivatives of f viewed as a function on R3 (or at least a

3-dimensional part of R3). Solving for dx gives

(6) dx = −fy
fx

dy − fz
fx

dz,

which means that when x is viewed as a function of independent variables y, z, then(
∂x

∂y

)
z

= −fy
fx

,

the coefficient of dy in (6). A similar argument shows that(
∂y

∂z

)
x

= −fz
fy(

∂z

∂x

)
y

= −fx
fz

,

and multiplying all three gives(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(
−fy
fx

)(
−fz
fy

)(
−fx
fz

)
= −1. �

Another example is the two-Jacobian rule. To state it, we need a definition:
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Definition 10.2. If u = u(x, y) and v = v(x, y), then the Jacobian of (u, v) with respect to

(x, y) is the function

∂(u, v)

∂(x, y)
:= det

(
ux uy

vx vy

)
.

Here ux means

(
∂u

∂x

)
y

, and so on.

Two-Jacobian rule: If u, v, w, x, y are related by constraint equations such that any two of

the variables may be taken as the independent variables, then(
∂u

∂v

)
w

=
∂(u,w)/∂(x, y)

∂(v, w)/∂(x, y)
.

(The right side could also be written out as

uxwy − wxuy

vxwy − wxvy
,

a ratio of determinants.)

How is the two-Jacobian rule used? It says that if one knows the partial derivatives of all

the variables with respect to independent variables x, y, then one can calculate the partial

derivatives using any other variables as the independent ones.

The two-Jacobian rule can be proved using differentials.

11. Summary

Here is a summary of some of the key points.

• The dimension of a domain in Rn is defined by e constraint equations (in n variables)

is usually D := n− e.

• In that case, usually it is possible locally to choose D of the variables to be the inde-

pendent variables so that the other variables becomes functions of the independent

variables. Then a function f on the domain can be locally re-expressed as a function

in only the independent variables.

• When discussing partial derivatives of a function defined on a domain defined by con-

straint equations, one must specify which variables are being used as the independent

variables (and specify which independent variable we are changing while holding the

other independent variables constant). For example,

(
∂f

∂s

)
r,t

means that we are

viewing f as a function of independent variables r, s, t and measuring the rate of

change of f as s varies while r and t are held constant.

• There are two methods for computing a partial derivative like

(
∂f

∂s

)
r,t

:
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– Method 1: Eliminate the dependent variables to express f as an explicit function

of the independent variables r, s, t.

– Method 2: Start with

df = fr dr + fs ds + ft dt + fu du + · · · ,

in which f is viewed as a function on (part of) Rn before taking the constraint

equations into account. Use the differential of the constraint equation(s) to

eliminate the differentials of the dependent variables (du, . . . ), so as to re-express

df in terms of the differentials of the independent variables only:

df =? dr+? ds+? dt.

Then

(
∂f

∂s

)
r,t

is the function ? in front of ds.
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