LS. Least Squares Interpolation

1. The least-squares line.

Suppose you have a large number n of experimentally determined points, through which you want to pass a curve. There is a formula (the Lagrange interpolation formula) producing a polynomial curve of degree n-1 which goes through the points exactly. But normally one wants to find a simple curve, like a line, parabola, or exponential, which goes approximately through the points, rather than a high-degree polynomial which goes exactly through them. The reason is that the location of the points is to some extent determined by experimental error, so one wants a smooth-looking curve which averages out these errors, not a wiggly polynomial which takes them seriously.

In this section, we consider the most common case — finding a line which goes approximately through a set of data points.

Suppose the data points are

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

and we want to find the line

$$(1) y = ax + b$$

which "best" passes through them. Assuming our errors in measurement are distributed randomly according to the usual bell-shaped curve (the so-called "Gaussian distribution"), it can be shown that the right choice of a and b is the one for which the sum D of the squares of the deviations

(2)
$$D = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

is a minimum. In the formula (2), the quantities in parentheses (shown by dotted lines in the picture) are the **deviations** between the observed values y_i and the ones $ax_i + b$ that would be predicted using the line (1).

This prescription for finding the line (1) is called the **method of least squares**, and the resulting line (1) is called the **least-squares** line or the **regression** line.

To calculate the values of a and b which make D a minimum, we see where the two partial derivatives are zero:

(3)
$$\frac{\partial D}{\partial a} = \sum_{i=1}^{n} 2(y_i - ax_i - b)(-x_i) = 0$$

$$\frac{\partial D}{\partial b} = \sum_{i=1}^{n} 2(y_i - ax_i - b)(-1) = 0.$$

2 18.02 NOTES

These give us a pair of *linear* equations for determining a and b, as we see by collecting terms and cancelling the 2's:

(4)
$$\left(\sum x_i^2\right)a + \left(\sum x_i\right)b = \sum x_i y_i \\ \left(\sum x_i\right)a + nb = \sum y_i.$$

(Notice that it saves a lot of work to differentiate (2) using the chain rule, rather than first expanding out the squares.)

The equations (4) are usually divided by n to make them more expressive:

(5)
$$\bar{s} a + \bar{x} b = \frac{1}{n} \sum x_i y_i$$
$$\bar{x} a + b = \bar{y}.$$

where \bar{x} and \bar{y} are the average of the x_i and y_i , and $\bar{s} = \sum x_i^2/n$ is the average of the squares.

From this point on use linear algebra to determine a and b. It is a good exercise to see that the equations are always solvable unless all the x_i are the same (in which case the best line is vertical and can't be written in the form (1)).

In practice, least-squares lines are found by pressing a calculator button, or giving a MatLab command. Examples of calculating a least-squares line are in the exercises in your book and these notes. Do them from scratch, starting from (2), since the purpose here is to get practice with max-min problems in several variables; don't plug into the equations (5). Remember to differentiate (2) using the chain rule; don't expand out the squares, which leads to messy algebra and highly probable error.

2. Fitting curves by least squares.

If the experimental points seem to follow a curve rather than a line, it might make more sense to try to fit a second-degree polynomial

$$(6) y = a_0 + a_1 x + a_2 x^2$$

to them. If there are only three points, we can do this exactly (by the Lagrange interpolation formula). For more points, however, we once again seek the values of a_0, a_1, a_2 for which the sum of the squares of the deviations

(7)
$$D = \sum_{i=1}^{n} (y_i - (a_0 + a_1 x_i + a_2 x_i^2))^2$$

is a minimum. Now there are three unknowns, a_0, a_1, a_2 . Calculating (remember to use the chain rule!) the three partial derivatives $\partial D/\partial a_i$, i=0,1,2, and setting them equal to zero leads to a square system of three linear equations; the a_i are the three unknowns, and the coefficients depend on the data points (x_i, y_i) . They can be solved by finding the inverse matrix, elimination, or using a calculator or MatLab.

If the points seem to lie more and more along a line as $x \to \infty$, but lie on one side of the line for low values of x, it might be reasonable to try a function which has similar behavior, like

$$(8) y = a_0 + a_1 x + a_2 \frac{1}{x}$$

and again minimize the sum of the squares of the deviations, as in (7). In general, this method of least squares applies to a trial expression of the form

(9)
$$y = a_0 f_0(x) + a_1 f_1(x) + \ldots + a_r f_r(x),$$

where the $f_i(x)$ are given functions (usually simple ones like $1, x, x^2, 1/x, e^{kx}$, etc. Such an expression (9) is called a **linear combination** of the functions $f_i(x)$. The method produces a square inhomogeneous system of linear equations in the unknowns a_0, \ldots, a_r which can be solved by finding the inverse matrix to the system, or by elimination.

The method also applies to finding a linear function

$$(10) z = a_1 + a_2 x + a_3 y$$

to fit a set of data points

$$(11) (x_1, y_1, z_1), \dots, (x_n, y_n, z_n).$$

where there are two independent variables x and y and a dependent variable z (this is the quantity being experimentally measured, for different values of (x,y)). This time after differentiation we get a 3×3 system of linear equations for determining a_1, a_2, a_3 .

The essential point in all this is that the unknown coefficients a_i should occur linearly in the trial function. Try fitting a function like ce^{kx} to data points by using least squares, and you'll see the difficulty right away. (Since this is an important problem — fitting an exponential to data points — one of the Exercises explains how to adapt the method to this type of problem.)

Exercises: Section 2G

18.02 Notes and Exercises by A. Mattuck and Bjorn Poonen with the assistance of T.Shifrin and S. LeDuc

©M.I.T. 2010-2014