2. Partial Differentiation

2A. Functions and Partial Derivatives

2A-1 In the pictures below, not all of the level curves are labeled. In (c) and (d), the picture is the same, but the labelings are different. In more detail:
b) the origin is the level curve 0 ; the other two unlabeled level curves are .5 and 1.5 ;
c) on the left, two level curves are labeled; the unlabeled ones are 2 and 3 ; the origin is the level curve 0 ;
d) on the right, two level curves are labeled; the unlabeled ones are -1 and -2 ; the origin is the level curve 1 ;

The crude sketches of the graph in the first octant are at the right.

a

b

c, d

e

2A-2 a) $f_{x}=3 x^{2} y-3 y^{2}, \quad f_{y}=x^{3}-6 x y+4 y$
b) $z_{x}=\frac{1}{y}, \quad z_{y}=-\frac{x}{y^{2}}$

c) $f_{x}=3 \cos (3 x+2 y), \quad f_{y}=2 \cos (3 x+2 y)$
d) $f_{x}=2 x y e^{x^{2} y}, \quad f_{y}=x^{2} e^{x^{2} y}$
e) $z_{x}=\ln (2 x+y)+\frac{2 x}{2 x+y}, \quad z_{y}=\frac{x}{2 x+y}$
f) $f_{x}=2 x z, \quad f_{y}=-2 z^{3}, \quad f_{z}=x^{2}-6 y z^{2}$

2A-3 a) both sides are $m n x^{m-1} y^{n-1}$
b) $f_{x}=\frac{y}{(x+y)^{2}}, \quad f_{x y}=\left(f_{x}\right)_{y}=\frac{x-y}{(x+y)^{3}} ; \quad f_{y}=\frac{-x}{(x+y)^{2}}, \quad f_{y x}=\frac{-(y-x)}{(x+y)^{3}}$.
c) $f_{x}=-2 x \sin \left(x^{2}+y\right), \quad f_{x y}=\left(f_{x}\right)_{y}=-2 x \cos \left(x^{2}+y\right)$;

$$
f_{y}=-\sin \left(x^{2}+y\right), \quad f_{y x}=-\cos \left(x^{2}+y\right) \cdot 2 x
$$

d) both sides are $f^{\prime}(x) g^{\prime}(y)$.

2A-4 $\left(f_{x}\right)_{y}=a x+6 y, \quad\left(f_{y}\right)_{x}=2 x+6 y$; therefore $f_{x y}=f_{y x} \Leftrightarrow a=2$. By inspection, one sees that if $a=2, \quad f(x, y)=x^{2} y+3 x y^{2}$ is a function with the given f_{x} and f_{y}.

2A-5
a) $w_{x}=a e^{a x} \sin a y, \quad w_{x x}=a^{2} e^{a x} \sin a y$;
$w_{y}=e^{a x} a \cos a y, \quad w_{y y}=e^{a x} a^{2}(-\sin a y) ; \quad$ therefore $w_{y y}=-w_{x x}$.
b) We have $w_{x}=\frac{2 x}{x^{2}+y^{2}}, \quad w_{x x}=\frac{2\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$. If we interchange x and y, the function $w=\ln \left(x^{2}+y^{2}\right)$ remains the same, while $w_{x x}$ gets turned into $w_{y y}$; since the interchange just changes the sign of the right hand side, it follows that $w_{y y}=-w_{x x}$.

2B. Tangent Plane; Linear Approximation

2B-1 a) $z_{x}=y^{2}, \quad z_{y}=2 x y$; therefore at $(1,1,1)$, we get $z_{x}=1, \quad z_{y}=2$, so that the tangent plane is $z=1+(x-1)+2(y-1)$, or $z=x+2 y-2$.
b) $w_{x}=-y^{2} / x^{2}, \quad w_{y}=2 y / x$; therefore at $(1,2,4)$, we get $w_{x}=-4, \quad w_{y}=4$, so that the tangent plane is $w=4-4(x-1)+4(y-2)$, or $w=-4 x+4 y$.
2B-2 a) $z_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{z} ; \quad$ by symmetry (interchanging x and y), $z_{y}=\frac{y}{z}$; then the tangent plane is $z=z_{0}+\frac{x_{0}}{z_{0}}\left(x-x_{0}\right)+\frac{y_{0}}{z_{0}}\left(y-y_{0}\right)$, or $z=\frac{x_{0}}{z_{0}} x+\frac{y_{0}}{z_{0}} y$, since $x_{0}^{2}+y_{0}^{2}=z_{0}^{2}$.
b) The line is $x=x_{0} t, y=y_{0} t, z=z_{0} t$; substituting into the equations of the cone and the tangent plane, both are satisfied for all values of t; this shows the line lies on both the cone and tangent plane (this can also be seen geometrically).

2B-3 Letting x, y, z be respectively the lengths of the two legs and the hypotenuse, we have $z=\sqrt{x^{2}+y^{2}}$; thus the calculation of partial derivatives is the same as in $\mathbf{2 B} \mathbf{- 2}$, and we get $\Delta z \approx \frac{3}{5} \Delta x+\frac{4}{5} \Delta y$. Taking $\Delta x=\Delta y=.01$, we get $\Delta z \approx \frac{7}{5}(.01)=.014$.
2B-4 From the formula, we get $R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$. From this we calculate

$$
\frac{\partial R}{\partial R_{1}}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right)^{2}, \text { and by symmetry, } \frac{\partial R}{\partial R_{2}}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right)^{2}
$$

Substituting $R_{1}=1, \quad R_{2}=2$ the approximation formula then gives $\Delta R=\frac{4}{9} \Delta R_{1}+\frac{1}{9} \Delta R_{2}$.
By hypothesis, $\left|\Delta R_{i}\right| \leq .1$, for $i=1,2$, so that $|\Delta R| \leq \frac{4}{9}(.1)+\frac{1}{9}(.1)=\frac{5}{9}(.1) \approx .06$; thus

$$
R=\frac{2}{3}=.67 \pm .06
$$

2B-5 a) We have $f(x, y)=(x+y+2)^{2}, \quad f_{x}=2(x+y+2), \quad f_{y}=2(x+y+2)$. Therefore at $(0,0), f_{x}(0,0)=f_{y}(0,0)=4, f(0,0)=4 ; \quad$ linearization is $4+4 x+4 y$; at $(1,2), f_{x}(1,2)=f_{y}(1,2)=10, f(1,2)=25$;
linearization is $10(x-1)+10(y-2)+25$, or $10 x+10 y-5$.
b) $f=e^{x} \cos y ; \quad f_{x}=e^{x} \cos y ; \quad f_{y}=-e^{x} \sin y$.
linearization at $(0,0): 1+x ; \quad$ linearization at $(0, \pi / 2):-(y-\pi / 2)$
2B-6 We have $V=\pi r^{2} h, \quad \frac{\partial V}{\partial r}=2 \pi r h, \quad \frac{\partial V}{\partial h}=\pi r^{2} ; \quad \Delta V \approx\left(\frac{\partial V}{\partial r}\right)_{0} \Delta r+\left(\frac{\partial V}{\partial h}\right)_{0} \Delta h$.
Evaluating the partials at $r=2, h=3$, we get

$$
\Delta V \approx 12 \pi \Delta r+4 \pi \Delta h
$$

Assuming the same accuracy $|\Delta r| \leq \epsilon,|\Delta h| \leq \epsilon$ for both measurements, we get

$$
|\Delta V| \leq 12 \pi \epsilon+4 \pi \epsilon=16 \pi \epsilon, \quad \text { which is }<.1 \text { if } \epsilon<\frac{1}{160 \pi}<.002
$$

2B-7 We have $r=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1} \frac{y}{x} ; \quad \frac{\partial r}{\partial x}=\frac{x}{r}, \quad \frac{\partial r}{\partial y}=\frac{y}{r}$.
Therefore at $(3,4), r=5$, and $\Delta r \approx \frac{3}{5} \Delta x+\frac{4}{5} \Delta y$. If $|\Delta x|$ and $|\Delta y|$ are both $\leq .01$, then

$$
|\Delta r| \leq \frac{3}{5}|\Delta x|+\frac{4}{5}|\Delta y|=\frac{7}{5}(.01)=.014(\text { or } .02)
$$

Similarly, $\frac{\partial \theta}{\partial x}=\frac{-y}{x^{2}+y^{2}} ; \quad \frac{\partial \theta}{\partial y}=\frac{x}{x^{2}+y^{2}}, \quad$ so at the point $(3,4)$,

$$
|\Delta \theta| \leq\left|\frac{-4}{25} \Delta x\right|+\left|\frac{3}{25} \Delta y\right| \leq \frac{7}{25}(.01)=.0028(\text { or } .003)
$$

Since at $(3,4)$ we have $\left|r_{y}\right|>\left|r_{x}\right|, r$ is more sensitive there to changes in y; by analogous reasoning, θ is more sensitive there to x.

2B-9 a) $w=x^{2}(y+1) ; w_{x}=2 x(y+1)=2$ at $(1,0)$, and $w_{y}=x^{2}=1$ at $(1,0)$; therefore w is more sensitive to changes in x around this point.
b) To first order approximation, $\Delta w \approx 2 \Delta x+\Delta y$, using the above values of the partial derivatives.

If we want $\Delta w=0$, then by the above, $2 \Delta x+\Delta y=0$, or $\Delta y / \Delta x=-2$.

2C. Differentials; Approximations

2C-1
a) $d w=\frac{d x}{x}+\frac{d y}{y}+\frac{d z}{z}$
b) $d w=3 x^{2} y^{2} z d x+2 x^{3} y z d y+x^{3} y^{2} d z$
c) $d z=\frac{2 y d x-2 x d y}{(x+y)^{2}}$
d) $d w=\frac{t d u-u d t}{t \sqrt{t^{2}-u^{2}}}$

2C-2 The volume is $V=x y z$; so $d V=y z d x+x z d y+x y d z$. For $x=5, y=10, z=20$,

$$
\Delta V \approx d V=200 d x+100 d y+50 d z
$$

from which we see that $|\Delta V| \leq 350(.1)$; therefore $V=1000 \pm 35$.
2C-3 a) $A=\frac{1}{2} a b \sin \theta$. Therefore, $d A=\frac{1}{2}(b \sin \theta d a+a \sin \theta d b+a b \cos \theta d \theta)$.
b) $d A=\frac{1}{2}\left(2 \cdot \frac{1}{2} d a+1 \cdot \frac{1}{2} d b+1 \cdot 2 \cdot \frac{1}{2} \sqrt{3} d \theta\right)=\frac{1}{2}\left(d a+\frac{1}{2} d b+\sqrt{3} d \theta\right)$;
therefore most sensitive to θ, least senstitive to b, since $d \theta$ and $d b$ have respectively the largest and smallest coefficients.
c) $d A=\frac{1}{2}\left(.02+.01+1.73(.02) \approx \frac{1}{2}(.065) \approx .03\right.$

2C-4 a) $P=\frac{k T}{V}$; therefore $d P=\frac{k}{V} d T-\frac{k T}{V^{2}} d V$
b) $V d P+P d V=k d T$; therefore $d P=\frac{k d T-P d V}{V}$.
c) Substituting $P=k T / V$ into (b) turns it into (a).

2C-5 a) $-\frac{d w}{w^{2}}=-\frac{d t}{t^{2}}-\frac{d u}{u^{2}}-\frac{d v}{v^{2}} ; \quad$ therefore $\quad d w=w^{2}\left(\frac{d t}{t^{2}}+\frac{d u}{u^{2}}+\frac{d v}{v^{2}}\right)$.
b) $2 u d u+4 v d v+6 w d w=0 ; \quad$ therefore $\quad d w=-\frac{u d u+2 v d v}{3 w}$.

2D. Gradient; Directional Derivative

$\mathbf{2 D - 1}$ a) $\nabla f=3 x^{2} \mathbf{i}+6 y^{2} \mathbf{j} ; \quad(\nabla f)_{P}=3 \mathbf{i}+6 \mathbf{j} ;\left.\quad \frac{d f}{d s}\right|_{\mathbf{u}}=(3 \mathbf{i}+6 \mathbf{j}) \cdot \frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}}=-\frac{3 \sqrt{2}}{2}$
b) $\nabla w=\frac{y}{z} \mathbf{i}+\frac{x}{z} \mathbf{j}-\frac{x y}{z^{2}} \mathbf{k} ; \quad(\nabla w)_{P}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k} ;\left.\quad \frac{d w}{d s}\right|_{\mathbf{u}}=(\nabla w)_{P} \cdot \frac{\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}}{3}=-\frac{1}{3}$
c) $\nabla z=(\sin y-y \sin x) \mathbf{i}+(x \cos y+\cos x) \mathbf{j} ; \quad(\nabla z)_{P}=\mathbf{i}+\mathbf{j}$;

$$
\left.\frac{d z}{d s}\right|_{\mathbf{u}}=(\mathbf{i}+\mathbf{j}) \cdot \frac{-3 \mathbf{i}+4 \mathbf{j}}{5}=\frac{1}{5}
$$

d) $\nabla w=\frac{2 \mathbf{i}+3 \mathbf{j}}{2 t+3 u} ; \quad(\nabla w)_{P}=2 \mathbf{i}+3 \mathbf{j} ;\left.\quad \frac{d w}{d s}\right|_{\mathbf{u}}=(2 \mathbf{i}+3 \mathbf{j}) \cdot \frac{4 i-3 \mathbf{j}}{5}=-\frac{1}{5}$
e) $\nabla f=2(u+2 v+3 w)(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) ; \quad(\nabla f)_{P}=4(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$ $\left.\frac{d f}{d s}\right|_{\mathbf{u}}=4(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \cdot \frac{-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}}{3}=-\frac{4}{3}$
$2 \mathbf{D - 2}$ a) $\nabla w=\frac{4 \mathbf{i}-3 \mathbf{j}}{4 x-3 y} ; \quad(\nabla w)_{P}=4 \mathbf{i}-3 \mathbf{j}$
$\left.\frac{d w}{d s}\right|_{\mathbf{u}}=(4 \mathbf{i}-3 \mathbf{j}) \cdot \mathbf{u}$ has maximum 5, in the $\operatorname{direction~} \mathbf{u}=\frac{4 \mathbf{i}-3 \mathbf{j}}{5}$, and minimum -5 in the opposite direction.
$\left.\frac{d w}{d s}\right|_{\mathbf{u}}=0$ in the directions $\pm \frac{3 \mathbf{i}+4 \mathbf{j}}{5}$.
b) $\nabla w=\langle y+z, x+z, x+y\rangle ; \quad(\nabla w)_{P}=\langle 1,3,0\rangle$; $\left.\max \frac{d w}{d s}\right|_{\mathbf{u}}=\sqrt{10}$, direction $\frac{\mathbf{i}+3 \mathbf{j}}{\sqrt{10}} ;\left.\quad \min \frac{d w}{d s}\right|_{\mathbf{u}}=-\sqrt{10}$, direction $-\frac{\mathbf{i}+3 \mathbf{j}}{\sqrt{10}}$; $\left.\frac{d w}{d s}\right|_{\mathbf{u}}=0$ in the directions $\mathbf{u}= \pm \frac{-3 \mathbf{i}+\mathbf{j}+c \mathbf{k}}{\sqrt{10+c^{2}}}$ (for all c)
c) $\nabla w=2 \sin (t-u) \cos (t-u)(\mathbf{i}-\mathbf{j})=\sin 2(t-u)(\mathbf{i}-\mathbf{j}) ; \quad(\nabla w)_{P}=\mathbf{i}-\mathbf{j}$; $\left.\max \frac{d w}{d s}\right|_{\mathbf{u}}=\sqrt{2}$, direction $\frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}} ;\left.\quad \min \frac{d w}{d s}\right|_{\mathbf{u}}=-\sqrt{2}$, direction $-\frac{-\mathbf{i}+\mathbf{j}}{\sqrt{2}}$; $\left.\frac{d w}{d s}\right|_{\mathbf{u}}=0$ in the directions $\pm \frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}$

2D-3 a) $\nabla f=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle ; \quad(\nabla f)_{P}=\langle 4,12,36\rangle ; \quad$ normal at $P:\langle 1,3,9\rangle ;$ tangent plane at $P: x+3 y+9 z=18$
b) $\nabla f=\langle 2 x, 8 y, 18 z\rangle ;$ normal at $P:\langle 1,4,9\rangle$, tangent plane: $x+4 y+9 z=14$.
c) $(\nabla w)_{P}=\left\langle 2 x_{0}, 2 y_{0},-2 z_{0}\right\rangle ; \quad$ tangent plane: $x_{0}\left(x-x_{0}\right)+y_{0}\left(y-y_{0}\right)-z_{0}\left(z-z_{0}\right)=0$, or $x_{0} x+y_{0} y-z_{0} z=0$, since $x_{0}^{2}+y_{0}^{2}-z_{0}^{2}=0$.
$\mathbf{2 D}-4$ а) $\nabla T=\frac{2 x \mathbf{i}+2 y \mathbf{j}}{x^{2}+y^{2}} ; \quad(\nabla T)_{P}=\frac{2 \mathbf{i}+4 \mathbf{j}}{5} ;$
T is increasing at P most rapidly in the direction of $(\nabla T)_{P}$, which is $\frac{\mathbf{i}+2 \mathbf{j}}{\sqrt{5}}$.
b) $|\nabla T|=\frac{2}{\sqrt{5}}=$ rate of increase in direction $\frac{\mathbf{i}+2 \mathbf{j}}{\sqrt{5}}$. Call the distance to go Δs, then

$$
\frac{2}{\sqrt{5}} \Delta s=.20 \quad \Rightarrow \quad \Delta s=\frac{.2 \sqrt{5}}{2}=\frac{\sqrt{5}}{10} \approx .22
$$

c) $\left.\frac{d T}{d s}\right|_{\mathbf{u}}=(\nabla T)_{P} \cdot \mathbf{u}=\frac{2 \mathbf{i}+4 \mathbf{j}}{5} \cdot \frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}=\frac{6}{5 \sqrt{2}}$;

$$
\frac{6}{5 \sqrt{2}} \Delta s=.12 \quad \Rightarrow \quad \Delta s=\frac{5 \sqrt{2}}{6}(.12) \approx(.10)(\sqrt{2}) \approx .14
$$

d) In the directions orthogonal to the gradient: $\pm \frac{2 \mathbf{i}-\mathbf{j}}{\sqrt{5}}$

2D-5 a) isotherms $=$ the level surfaces $x^{2}+2 y^{2}+2 z^{2}=c$, which are ellipsoids.
b) $\quad \nabla T=\langle 2 x, 4 y, 4 z\rangle ; \quad(\nabla T)_{P}=\langle 2,4,4\rangle ; \quad\left|(\nabla T)_{P}\right|=6$;
for most rapid decrease, use direction of $-(\nabla T)_{P}: \quad-\frac{1}{3}\langle 1,2,2\rangle$
c) let Δs be distance to go; then $-6(\Delta s)=-1.2 ; \quad \Delta s \approx .2$
d) $\left.\frac{d T}{d s}\right|_{\mathbf{u}}=(\nabla T)_{P} \cdot \mathbf{u}=\langle 2,4,4\rangle \cdot \frac{\langle 1,-2,2\rangle}{3}=\frac{2}{3} ; \quad \frac{2}{3} \Delta s \approx .10 \Rightarrow \Delta s \approx .15$.

2D-6 $\nabla u v=\left\langle(u v)_{x},(u v)_{y}\right\rangle=\left\langle u v_{x}+v u_{x}, u v_{y}+v u_{y}\right\rangle=\left\langle u v_{x}, u v_{y}\right\rangle+\left\langle v u_{x}+v u_{y}\right\rangle=u \nabla v+v \nabla u$
$\nabla(u v)=u \nabla v+v \nabla u \quad \Rightarrow \quad \nabla(u v) \cdot \mathbf{u}=u \nabla v \cdot \mathbf{u}+\left.v \nabla u \cdot \mathbf{u} \quad \Rightarrow \quad \frac{d(u v)}{d s}\right|_{\mathbf{u}}=\left.u \frac{d v}{d s}\right|_{\mathbf{u}}+\left.v \frac{d u}{d s}\right|_{\mathbf{u}}$.
2D-7 At P, let $\nabla w=a \mathbf{i}+b \mathbf{j}$. Then

$$
\begin{aligned}
& a \mathbf{i}+b \mathbf{j} \cdot \frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}=2 \quad \Rightarrow \quad a+b=2 \sqrt{2} \\
& a \mathbf{i}+b \mathbf{j} \cdot \frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}}=1 \quad \Rightarrow \quad a-b=\sqrt{2}
\end{aligned}
$$

Adding and subtracting the equations on the right, we get $a=\frac{3}{2} \sqrt{2}, \quad b=\frac{1}{2} \sqrt{2}$.
2D-8 We have $P(0,0,0)=32$; we wish to decrease it to 31.1 by traveling the shortest distance from the origin $\mathbf{0}$; for this we should travel in the direction of $-(\nabla P)_{\mathbf{0}}$.

$$
\nabla P=\left\langle(y+2) e^{z},(x+1) e^{z},(x+1)(y+2) e^{z}\right\rangle ; \quad(\nabla P)_{\mathbf{0}}=\langle 2,1,2\rangle . \quad\left|(\nabla P)_{\mathbf{0}}\right|=3
$$

Since $(-3) \cdot(\Delta s)=-.9 \quad \Rightarrow \quad \Delta s=.3$, we should travel a distance .3 in the direction of $-(\nabla P)_{\mathbf{0}}$. Since $|-\langle 2,1,2\rangle|=3$, the distance .3 will be $\frac{1}{10}$ of the distance from $(0,0,0)$ to $(-2,-1,-2)$, which will bring us to $(-.2,-.1,-.2)$.

2D-9 In these, we use $\left.\frac{d w}{d s}\right|_{\mathbf{u}} \approx \frac{\Delta w}{\Delta s}$: we travel in the direction \mathbf{u} from a given point P to the nearest level curve C; then Δs is the distance traveled (estimate it by using the unit distance), and Δw is the corresponding change in w (estimate it by using the labels on the level curves).
a) The direction of ∇f is perpendicular to the level curve at A, in the increasing sense (the "uphill" direction). The magnitude of ∇f is the directional derivative in that direction: from the picture, $\frac{\Delta w}{\Delta s} \approx \frac{1}{.5}=2$.
b), c) $\frac{\partial w}{\partial x}=\left.\frac{d w}{d s}\right|_{\mathbf{i}}, \quad \frac{\partial w}{\partial y}=\left.\frac{d w}{d s}\right|_{\mathbf{j}}, \quad$ so B will be where \mathbf{i} is tangent to the level curve and C where \mathbf{j} is tangent to the level curve.
d) At $\mathrm{P}, \quad \frac{\partial w}{\partial x}=\left.\frac{d w}{d s}\right|_{\mathbf{i}} \approx \frac{\Delta w}{\Delta s} \approx \frac{-1}{5 / 3}=-.6 ; \quad \frac{\partial w}{\partial y}=\left.\frac{d w}{d s}\right|_{\mathbf{j}} \approx \frac{\Delta w}{\Delta s} \approx \frac{-1}{1}=-1$.
e) If \mathbf{u} is the direction of $\mathbf{i}+\mathbf{j}$, we have $\left.\frac{d w}{d s}\right|_{u} \approx \frac{\Delta w}{\Delta s} \approx \frac{1}{.5}=2$
f) If \mathbf{u} is the direction of $\mathbf{i}-\mathbf{j}$, we have $\left.\frac{d w}{d s}\right|_{u} \approx \frac{\Delta w}{\Delta s} \approx \frac{-1}{5 / 4}=-.8$
g) The gradient is 0 at a local extremum point: here at the point marked giving the location of the hilltop.

2E. Chain Rule

2E-1
a) (i) $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=y z \cdot 1+x z \cdot 2 t+x y \cdot 3 t^{2}=t^{5}+2 t^{5}+3 t^{5}=6 t^{5}$
(ii) $w=x y z=t^{6} ; \quad \frac{d w}{d t}=6 t^{5}$
b) (i) $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}=2 x(-\sin t)-2 y(\cos t)=-4 \sin t \cos t$
(ii) $w=x^{2}-y^{2}=\cos ^{2} t-\sin ^{2} t=\cos 2 t ; \quad \frac{d w}{d t}=-2 \sin 2 t$
c) (i) $\frac{d w}{d t}=\frac{2 u}{u^{2}+v^{2}}(-2 \sin t)+\frac{2 v}{u^{2}+v^{2}}(2 \cos t)=-\cos t \sin t+\sin t \cos t=0$
(ii) $w=\ln \left(u^{2}+v^{2}\right)=\ln \left(4 \cos ^{2} t+4 \sin ^{2} t\right)=\ln 4 ; \quad \frac{d w}{d t}=0$.

2E-2 a) The value $t=0$ corresponds to the point $(x(0), y(0))=(1,0)=P$.

$$
\left.\left.\frac{d w}{d t}\right|_{0}=\left.\left.\frac{\partial w}{\partial x}\right|_{P} \frac{d x}{d t}\right|_{0}+\left.\left.\frac{\partial w}{\partial y}\right|_{P} \frac{d y}{d t}\right|_{0}=-2 \sin t+3 \cos t\right]_{0}=3 .
$$

b) $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}=y(-\sin t)+x(\cos t)=-\sin ^{2} t+\cos ^{2} t=\cos 2 t$.
$\frac{d w}{d t}=0$ when $2 t=\frac{\pi}{2}+n \pi$, therefore when $t=\frac{\pi}{4}+\frac{n \pi}{2}$.
c) $t=1$ corresponds to the point $(x(1), y(1), z(1))=(1,1,1)$.

$$
\left.\frac{d f}{d t}\right|_{1}=\left.1 \cdot \frac{d x}{d t}\right|_{1}-\left.1 \cdot \frac{d y}{d t}\right|_{1}+\left.2 \cdot \frac{d z}{d t}\right|_{1}=1 \cdot 1-1 \cdot 2+2 \cdot 3=5 .
$$

d) $\frac{d f}{d t}=3 x^{2} y \frac{d x}{d t}+\left(x^{3}+z\right) \frac{d y}{d t}+y \frac{d z}{d t}=3 t^{4} \cdot 1+2 x^{3} \cdot 2 t+t^{2} \cdot 3 t^{2}=10 t^{4}$.

2E-3 a) Let $w=u v$, where $u=u(t), v=v(t) ; \quad \frac{d w}{d t}=\frac{\partial w}{\partial u} \frac{d u}{d t}+\frac{\partial w}{\partial v} \frac{d v}{d t}=v \frac{d u}{d t}+u \frac{d v}{d t}$.
b) $\frac{d(u v w)}{d t}=v w \frac{d u}{d t}+u w \frac{d v}{d t}+u v \frac{d w}{d t} ; \quad e^{2 t} \sin t+2 t e^{2 t} \sin t+t e^{2 t} \cos t$

2E-4 The values $u=1, v=1$ correspond to the point $x=0, y=1$. At this point,

$$
\begin{aligned}
& \frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}=2 \cdot 2 u+3 \cdot v=2 \cdot 2+3=7 . \\
& \frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial v}=2 \cdot(-2 v)+3 \cdot u=2 \cdot(-2)+3 \cdot 1=-1
\end{aligned}
$$

2E-5 a) $w_{r}=w_{x} x_{r}+w_{y} y_{r}=w_{x} \cos \theta+w_{y} \sin \theta$

$$
w_{\theta}=w_{x} x_{\theta}+w_{y} y_{\theta}=w_{x}(-r \sin \theta)+w_{y}(r \cos \theta)
$$

Therefore,

$$
\begin{aligned}
& \left(w_{r}\right)^{2}+\left(w_{\theta} / r\right)^{2} \\
& \quad=\left(w_{x}\right)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\left(w_{y}\right)^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 w_{x} w_{y} \cos \theta \sin \theta-2 w_{x} w_{y} \sin \theta \cos \theta \\
& \quad=\left(w_{x}\right)^{2}+\left(w_{y}\right)^{2}
\end{aligned}
$$

b) The point $r=\sqrt{2}, \theta=\pi / 4$ in polar coordinates corresponds in rectangular coordinates to the point $x=1, y=1$. Using the chain rule equations in part (a),

$$
w_{r}=w_{x} \cos \theta+w_{y} \sin \theta ; \quad w_{\theta}=w_{x}(-r \sin \theta)+w_{y}(r \cos \theta)
$$

but evaluating all the partial derivatives at the point, we get

$$
\begin{array}{cl}
w_{r}=2 \cdot \frac{1}{2} \sqrt{2}-1 \cdot \frac{1}{2} \sqrt{2}=\frac{1}{2} \sqrt{2} ; \quad & \frac{w_{\theta}}{r}=2\left(-\frac{1}{2}\right) \sqrt{2}-\frac{1}{2} \sqrt{2}=-\frac{3}{2} \sqrt{2} \\
\left(w_{r}\right)^{2}+\frac{1}{r}\left(w_{\theta}\right)^{2}=\frac{1}{2}+\frac{9}{2}=5 ; \quad\left(w_{x}\right)^{2}+\left(w_{y}\right)^{2}=2^{2}+(-1)^{2}=5
\end{array}
$$

2E-6 $\quad w_{u}=w_{x} \cdot 2 u+w_{y} \cdot 2 v ; \quad w_{v}=w_{x} \cdot(-2 v)+w_{y} \cdot 2 u$, by the chain rule. Therefore

$$
\begin{aligned}
\left(w_{u}\right)^{2}+\left(w_{v}\right)^{2} & =\left[4 u^{2}\left(w_{x}\right)+4 v^{2}\left(w_{y}\right)^{2}+4 u v w_{x} w_{y}\right]+\left[4 v^{2}\left(w_{x}\right)+4 u^{2}\left(w_{y}\right)^{2}-4 u v w_{x} w_{y}\right] \\
& =4\left(u^{2}+v^{2}\right)\left[\left(w_{x}\right)^{2}+\left(w_{y}\right)^{2}\right] .
\end{aligned}
$$

2E-7 By the chain rule, $f_{u}=f_{x} x_{u}+f_{y} y_{u}, \quad f_{v}=f_{x} x_{v}+f_{y} y_{v} ; \quad$ therefore

$$
\left\langle f_{u} f_{v}\right\rangle=\left\langle f_{x} f_{y}\right\rangle\left(\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right)
$$

2E-8 a) By the chain rule for functions of one variable,

$$
\frac{\partial w}{\partial x}=f^{\prime}(u) \cdot \frac{\partial u}{\partial x}=f^{\prime}(u) \cdot-\frac{y}{x^{2}} ; \quad \frac{\partial w}{\partial y}=f^{\prime}(u) \cdot \frac{\partial u}{\partial y}=f^{\prime}(u) \cdot \frac{1}{x}
$$

Therefore,

$$
x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}=f^{\prime}(u) \cdot-\frac{y}{x}+f^{\prime}(u) \cdot \frac{y}{x}=0
$$

2F. Maximum-minimum Problems

2F-1 In these, denote by $D=x^{2}+y^{2}+z^{2}$ the square of the distance from the point (x, y, z) to the origin; then the point which minimizes D will also minimize the actual distance.
a) Since $z^{2}=\frac{1}{x y}$, we get on substituting, $D=x^{2}+y^{2}+\frac{1}{x y}$. with x and y independent; setting the partial derivatives equal to zero, we get

$$
D_{x}=2 x-\frac{1}{x^{2} y}=0 ; \quad D_{y}=2 y-\frac{1}{y^{2} x}=0 ; \quad \text { or } \quad 2 x^{2}=\frac{1}{x y}, \quad 2 y^{2}=\frac{1}{x y} .
$$

Solving, we see first that $x^{2}=\frac{1}{2 x y}=y^{2}$, from which $y= \pm x$.
If $y=x$, then $x^{4}=\frac{1}{2}$ and $x=y=2^{-1 / 4}$, and so $z=2^{1 / 4} ; \quad$ if $y=-x$, then $x^{4}=-\frac{1}{2}$ and there are no solutions. Thus the unique point is $\left(1 / 2^{1 / 4}, 1 / 2^{1 / 4}, 2^{1 / 4}\right)$.
b) Using the relation $x^{2}=1+y z$ to eliminate x, we have $D=1+y z+y^{2}+z^{2}$, with y and z independent; setting the partial derivatives equal to zero, we get

$$
D_{y}=2 y+z=0, \quad D_{z}=2 z+y=0
$$

solving, these equations only have the solution $y=z=0$; therefore $x= \pm 1$, and there are two points: $(\pm 1,0,0)$, both at distance 1 from the origin.

2F-2 Letting x be the length of the ends, y the length of the sides, and z the height, we have

$$
\text { total area of cardboard } A=3 x y+4 x z+2 y z, \quad \text { volume } \quad V=x y z=1
$$

Eliminating z to make the remaining variables independent, and equating the partials to zero, we get

$$
A=3 x y+\frac{4}{y}+\frac{2}{x} ; \quad A_{x}=3 y-\frac{2}{x^{2}}=0, \quad A_{y}=3 x-\frac{4}{y^{2}}=0
$$

From these last two equations, we get

$$
\begin{gathered}
3 x y=\frac{2}{x}, \quad 3 x y=\frac{4}{y} \quad \Rightarrow \quad \frac{2}{x}=\frac{4}{y} \quad \Rightarrow \quad y=2 x \\
\Rightarrow \quad 3 x^{3}=1 \quad \Rightarrow \quad x=\frac{1}{3^{1 / 3}}, \quad y=\frac{2}{3^{1 / 3}}, \quad z=\frac{1}{x y}=\frac{3^{2 / 3}}{2}=\frac{3}{2 \cdot 3^{1 / 3}}
\end{gathered}
$$

therefore the proportions of the most economical box are $x: y: z=1: 2: \frac{3}{2}$.
2F-5 The cost is $C=x y+x z+4 y z+4 x z$, where the successive terms represent in turn the bottom, back, two sides, and front; i.e., the problem is:

$$
\text { minimize: } \quad C=x y+5 x z+4 y z, \quad \text { with the constraint: } \quad x y z=V=2.5
$$

Substituting $z=V / x y$ into C, we get

$$
C=x y+\frac{5 V}{y}+\frac{4 V}{x} ; \quad \frac{\partial C}{\partial x}=y-\frac{4 V}{x^{2}}, \quad \frac{\partial C}{\partial y}=x-\frac{5 V}{y^{2}} .
$$

We set the two partial derivatives equal to zero and solving the resulting equations simultaneously, by eliminating y; we get $x^{3}=\frac{16 V}{5}=8$, (using $V=5 / 2$), so $x=2, y=\frac{5}{2}, z=\frac{1}{2}$.

2G. Least-squares Interpolation

2G-1 Find $y=m x+b$ that best fits $(1,1),(2,3),(3,2)$.

$$
\begin{aligned}
& D=(m+b-1)^{2}+(2 m+b-3)^{2}+(3 m+b-2)^{2} \\
& \frac{\partial D}{\partial m}=2(m+b-1)+4(2 m+b-3)+6(3 m+b-2)=2(14 m+6 b-13) \\
& \frac{\partial D}{\partial b}=2(m+b-1)+2(2 m+b-3)+2(3 m+b-2)=2(6 m+3 b-6)
\end{aligned}
$$

Thus the equations $\frac{\partial D}{\partial m}=0$ and $\frac{\partial D}{\partial b}=0$ are $\left\{\begin{array}{c}14 m+6 b=13 \\ 6 m+3 b=6\end{array}\right.$, whose solution is $m=\frac{1}{2}, b=1$, and the line is $y=\frac{1}{2} x+1$.

2G-4 $D=\sum_{i}\left(a+b x_{i}+c y_{i}-z_{i}\right)^{2}$. The equations are
$\partial D / \partial a=\sum 2\left(a+b x_{i}+c y_{i}-z_{i}\right)=0$
$\partial D / \partial b=\sum 2 x_{i}\left(a+b x_{i}+c y_{i}-z_{i}\right)=0$
$\partial D / \partial c=\sum 2 y_{i}\left(a+b x_{i}+c y_{i}-z_{i}\right)=0$
Cancel the 2's; the equations become (on the right, $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right], \mathbf{1}=[1, \ldots, 1]$, etc.)

$$
\left.\begin{array}{rlrl}
n a+\left(\sum x_{i}\right) b+\left(\sum y_{i}\right) c & =\sum z_{i} & n a+(\mathbf{x} \cdot \mathbf{1}) b+(\mathbf{y} \cdot \mathbf{1}) c & =\mathbf{z} \cdot \mathbf{1} \\
\left(\sum x_{i}\right) a+\left(\sum x_{i}^{2}\right) b+\left(\sum x_{i} y_{i}\right) c & =\sum x_{i} z_{i} & \text { or } & (\mathbf{x} \cdot \mathbf{1}) a+(\mathbf{x} \cdot \mathbf{x}) b+(\mathbf{x} \cdot \mathbf{y}) c
\end{array}=\mathbf{x} \cdot \mathbf{z}, ~\left(\mathbf{y} y_{i}\right) a+\left(\sum x_{i} y_{i}\right) b+\left(\sum y_{i}^{2}\right) c=\sum y_{i} z_{i} \quad 1 \mathbf{y} \cdot \mathbf{1}\right) a+(\mathbf{x} \cdot \mathbf{y}) b+(\mathbf{y} \cdot \mathbf{y}) c=\mathbf{y} \cdot \mathbf{z}
$$

2H. Max-min: 2nd Derivative Criterion; Boundary Curves

$2 \mathrm{H}-1$

a) $f_{x}=0: 2 x-y=3 ; \quad f_{y}=0:-x-4 y=3 \quad$ critical point: $(1,-1)$

$$
A=f_{x x}=2 ; B=f_{x y}=-1 ; C=f_{y y}=-4 ; \quad A C-B^{2}=-9<0 ; \text { saddle point }
$$

b) $f_{x}=0: 6 x+y=1 ; \quad f_{y}=0: x+2 y=2 \quad$ critical point: $(0,1)$
$A=f_{x x}=6 ; B=f_{x y}=1 ; C=f_{y y}=2 ; \quad A C-B^{2}=11>0 ;$ local minimum
c) $f_{x}=0: 8 x^{3}-y=0 ; \quad f_{y}=0: 2 y-x=0 ; \quad$ eliminating y, we get
$16 x^{3}-x=0$, or $x\left(16 x^{2}-1\right)=0 \Rightarrow x=0, x=\frac{1}{4}, x=-\frac{1}{4}$, giving the critical points $(0,0), \quad\left(\frac{1}{4}, \frac{1}{8}\right), \quad\left(-\frac{1}{4},-\frac{1}{8}\right)$.
Since $f_{x x}=24 x^{2}, \quad f_{x y}=-1, \quad f_{y y}=2$, we get for the three points respectively:
$(0,0): \Delta=-1$ (saddle); $\quad\left(\frac{1}{4}, \frac{1}{8}\right): \Delta=2$ (minimum) $; \quad\left(-\frac{1}{4},-\frac{1}{8}\right): \Delta=2$ (minimum)
d) $f_{x}=0: \quad 3 x^{2}-3 y=0 ; \quad f_{y}=0: \quad-3 x+3 y^{2}=0$. Eliminating y gives
$-x+x^{4}=0$, or $x\left(x^{3}-1\right)=0 \Rightarrow x=0, y=0$ or $x=1, y=1$.
Since $f_{x x}=6 x, \quad f_{x y}=-3, \quad f_{y y}=6 y$, we get for the two critical points respectively:
$(0,0): \quad A C-B^{2}=-9$ (saddle); $(1,1): A C-B^{2}=27$ (minimum)
e) $f_{x}=0: \quad 3 x^{2}\left(y^{3}+1\right)=0 ; \quad f_{y}=0: \quad 3 y^{2}\left(x^{3}+1\right)=0 ;$ solving simultaneously, we get from the first equation that either $x=0$ or $y=-1$; finding in each case the other coordinate then leads to the two critical points $(0,0)$ and $(-1,-1)$.

Since $f_{x x}=6 x\left(y^{3}+1\right), \quad f_{x y}=3 x^{2} \cdot 3 y^{2}, \quad f_{y y}=6 y\left(x^{3}+1\right)$, we have

$$
(-1,-1): \quad A C-B^{2}=-9(\text { saddle }) ; \quad(0,0): \quad A C-B^{2}=0, \text { test fails. }
$$

(By studying the behavior of $f(x, y)$ on the lines $y=m x$, for different values of m, it is possible to see that also $(0,0)$ is a saddle point.)

2H-3 The region R has no critical points; namely, the equations $f_{x}=0$ and $f_{y}=0$ are

$$
2 x+2=0, \quad 2 y+4=0 \quad \Rightarrow \quad x=-1, y=-2
$$

but this point is not in R. We therefore investigate the diagonal boundary of R, using the parametrization $x=t, y=-t$. Restricted to this line, $f(x, y)$ becomes a function of t alone, which we denote by $g(t)$, and we look for its maxima and minima.

$$
g(t)=f(t,-t)=2 t^{2}-2 t-1 ; \quad g^{\prime}(t)=4 t-2, \text { which is } 0 \text { at } t=1 / 2
$$

This point is evidently a minimum for $g(t)$; there is no maximum: $g(t)$ tends to ∞. Therefore for $f(x, y)$ on R, the minimum occurs at the point $(1 / 2,-1 / 2)$, and there is no maximum; $f(x, y)$ tends to infinity in different directions in R.

2H-4 We have $f_{x}=y-1, \quad f_{y}=x-1$, so the only critical point is at $(1,1)$.
a) On the two sides of the boundary, the function $f(x, y)$ becomes respectively

$$
y=0: \quad f(x, y)=-x+2 ; \quad x=0: \quad f(x, y)=-y+2
$$

Since the function is linear and decreasing on both sides, it has no minimum points (informally, the minimum is $-\infty)$. Since $f(1,1)=1$ and $f(x, x)=x^{2}-2 x+2 \rightarrow \infty$ as $x \rightarrow \infty$, the maximum of f on the first quadrant is ∞.
b) Continuing the reasoning of (a) to find the maximum and minimum points of $f(x, y)$ on the boundary, on the other two sides of the boundary square, the function $f(x, y)$ becomes

$$
y=2: \quad f(x, y)=x \quad x=2: \quad f(x, y)=y
$$

Since $f(x, y)$ is thus increasing or decreasing on each of the four sides, the maximum and minimum points on the boundary square R can only occur at the four corner points; evaluating $f(x, y)$ at these four points, we find

$$
f(0,0)=2 ; \quad f(2,2)=2 ; \quad f(2,0)=0 ; \quad f(0,2)=0
$$

As in (a), since $f(1,1)=1$,
maximum points of f on $R: \quad(0,0)$ and $(2,2) ; \quad$ minimum points: $(2,0)$ and $(0,2)$.
c) The data indicates that $(1,1)$ is probably a saddle point. Confirming this, we have $f_{x x}=0, f_{x y}=1, f_{y y}=0$ for all x and y; therefore $A C-B^{2}=-1<0$, so $(1,1)$ is a saddle point, by the 2nd-derivative criterion.

2H-5 Since $f(x, y)$ is linear, it will not have critical points: namely, for all x and y we have $f_{x}=1, f_{y}=\sqrt{3}$. So any maxima or minima must occur on the boundary circle.

We parametrize the circle by $x=\cos \theta, y=\sin \theta$; restricted to this boundary circle, $f(x, y)$ becomes a function of θ alone which we call $g(\theta)$:

$$
g(\theta)=f(\cos \theta, \sin \theta)=\cos \theta+\sqrt{3} \sin \theta+2
$$

Proceeding in the usual way to find the maxima and minima of $g(\theta)$, we get

$$
g^{\prime}(\theta)=-\sin \theta+\sqrt{3} \cos \theta=0, \quad \text { or } \quad \tan \theta=\sqrt{3}
$$

It follows that the two critical points of $g(\theta)$ are $\theta=\frac{\pi}{3}$ and $\frac{4 \pi}{3}$; evaluating g at these two points, we get $g(\pi / 3)=4$ (the maximum), and $g(4 \pi / 3)=0$ (the minimum).

Thus the maximum of $f(x, y)$ in the circular disc R is at $(1 / 2, \sqrt{3} / 2)$, while the minimum is at $(-1 / 2,-\sqrt{3} / 2)$.

2H-6 a) Since $z=4-x-y$, the problem is to find on R the maximum and minimum of the total area

$$
f(x, y)=x y+\frac{1}{4}(4-x-y)^{2}
$$

where R is the triangle given by $R: 0 \leq x, \quad 0 \leq y, \quad x+y \leq 4$.

To find the critical points of $f(x, y)$, the equations $f_{x}=0$ and $f_{y}=0$ are respectively

$$
y-\frac{1}{2}(4-x-y)=0 ; \quad x-\frac{1}{2}(4-x-y)=0
$$

which imply first that $x=y$, and from this, $x-\frac{1}{2}(4-2 x)$; the unique solution is $x=1, y=1$.

The region R is a triangle, on whose sides $f(x, y)$ takes respectively the values bottom: $y=0 ; f=\frac{1}{4}(4-x)^{2} ; \quad$ left side: $x=0 ; f=\frac{1}{4}(4-y)^{2}$; diagonal $y=4-x ; f=x(4-x)$.

On the bottom and side, f is decreasing; on the diagonal, f has a maximum at $x=2, y=2$. Therefore we need to examine the three corner points and $(2,2)$ as candidates for maximum and minimum points, as well as the critical point

$$
f(0,0)=4 ; \quad f(4,0)=0 ; \quad f(0,4)=0 ; \quad f(2,2)=4 \quad f(1,1)=2 .
$$

It follows that the critical point is just a saddle point; to get the maximum total area 4, make $x=y=0, z=4$, or $x=y=2, z=0$, either of which gives a point "rectangle" and a square of side 2 ; for the minimum total area 0 , take for example $x=0, y=4, z=0$, which gives a "rectangle" of length 4 with zero area, and a point square.
b) We have $f_{x x}=\frac{1}{2}, f_{x y}=\frac{3}{2}, f_{y y}=\frac{1}{2}$ for all x and y; therefore $A C-B^{2}=-2<0$, so $(1,1)$ is a saddle point, by the 2 nd-derivative criterion.

2H-7 a) $f_{x}=4 x-2 y-2, \quad f_{y}=-2 x+2 y$; setting these $=0$ and solving simultaneously, we get $x=1, y=1$, which is therefore the only critical point.

On the four sides of the boundary rectangle R, the function $f(x, y)$ becomes:

$$
\begin{array}{llll}
\text { on } y=-1: & f(x, y)=2 x^{2}+1 ; & \text { on } y=2: & f(x, y)=2 x^{2}-6 x+4 \\
\text { on } x=0: & f(x, y)=y^{2} ; & \text { on } x=2: & f(x, y)=y^{2}-4 y+4
\end{array}
$$

By one-variable calculus, $f(x, y)$ is increasing on the bottom and decresing on the right side; on the left side it has a minimum at $(0,0)$, and on the top a minimum at $\left(\frac{3}{2}, 2\right)$. Thus the maximum and minimum points on the boundary rectangle R can only occur at the four corner points, or at $(0,0)$ or $\left(\frac{3}{2}, 2\right)$. At these we find:

$$
f(0,-1)=1 ; \quad f(0,2)=4 ; \quad f(2,-1)=9 ; \quad f(2,2)=0 ; \quad f\left(\frac{3}{2}, 2\right)=-\frac{1}{2}, \quad f(0,0)=0
$$

At the critical point $f(1,1)=-1$; comparing with the above, it is a minimum; therefore, maximum point of $f(x, y)$ on R : $(2,-1) \quad$ minimum point of $f(x, y)$ on $R:(1,1)$
b) We have $f_{x x}=4, f_{x y}=-2, f_{y y}=2$ for all x and y; therefore $A C-B^{2}=4>0$ and $A=4>0$, so $(1,1)$ is a minimum point, by the 2 nd-derivative criterion.

2I. Lagrange Multipliers

2I-1 Letting $P:(x, y, z)$ be the point, in both problems we want to maximize $V=x y z$, subject to a constraint $f(x, y, z)=c$. The Lagrange equations for this, in vector form, are

$$
\nabla(x y z)=\lambda \cdot \nabla f(x, y, z), \quad f(x, y, z)=c .
$$

a) Here $f=c$ is $x+2 y+3 z=18$; equating components, the Lagrange equations become

$$
y z=\lambda, \quad x z=2 \lambda, \quad x y=3 \lambda ; \quad x+2 y+3 z=18
$$

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make them equal; this gives

$$
\lambda x=2 \lambda y=3 \lambda z, \quad \text { or } \quad x=2 y=3 z=6, \text { since the sum is } 18 .
$$

We get therefore as the answer $x=6, \quad y=3, \quad z=2$. This is a maximum point, since if P lies on the triangular boundary of the region in the first octant over which it varies, the volume of the box is zero.
b) Here $f=c$ is $x^{2}+2 y^{2}+4 z^{2}=12$; equating components, the Lagrange equations become

$$
y z=\lambda \cdot 2 x, \quad x z=\lambda \cdot 4 y, \quad x y=\lambda \cdot 8 z ; \quad x^{2}+2 y^{2}+4 z^{2}=12 .
$$

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make them equal; this gives

$$
\lambda \cdot 2 x^{2}=\lambda \cdot 4 y^{2}=\lambda \cdot 8 z^{2}, \quad \text { or } \quad x^{2}=2 y^{2}=4 z^{2}=4, \quad \text { since the sum is } 12 .
$$

We get therefore as the answer $x=2, \quad y=\sqrt{2}, \quad z=1$. This is a maximum point, since if P lies on the boundary of the region in the first octant over which it varies $(1 / 8$ of the ellipsoid), the volume of the box is zero.

2I-2 Since we want to minimize $x^{2}+y^{2}+z^{2}$, subject to the constraint $x^{3} y^{2} z=6 \sqrt{3}$, the Lagrange multiplier equations are

$$
2 x=\lambda \cdot 3 x^{2} y^{2} z, \quad 2 y=\lambda \cdot 2 x^{3} y z, \quad 2 z=\lambda \cdot x^{3} y^{2} ; \quad x^{3} y^{2} z=6 \sqrt{3}
$$

To solve them symmetrically, multiply the first three equations respectively by x, y, and z, then divide them through respectively by 3,2 , and 1 ; this makes the right sides equal, so that, after canceling 2 from every numerator, we get

$$
\frac{x^{2}}{3}=\frac{y^{2}}{2}=z^{2} ; \quad \text { therefore } x=z \sqrt{3}, y=z \sqrt{2}
$$

Substituting into $x^{3} y^{2} z=6 \sqrt{3}$, we get $3 \sqrt{3} z^{3} \cdot 2 z^{2} \cdot z=6 \sqrt{3}$, which gives as the answer, $x=\sqrt{3}, y=\sqrt{2}, z=1$.

This is clearly a minimum, since if P is near one of the coordinate planes, one of the variables is close to zero and therefore one of the others must be large, since $x^{3} y^{2} z=6 \sqrt{3}$; thus P will be far from the origin.

2I-3 Referring to the solution of $2 \mathrm{~F}-2$, we let x be the length of the ends, y the length of the sides, and z the height, and get

$$
\text { total area of cardboard } A=3 x y+4 x z+2 y z, \quad \text { volume } \quad V=x y z=1
$$

The Lagrange multiplier equations $\nabla A=\lambda \cdot \nabla(x y z) ; \quad x y z=1$, then become

$$
3 y+4 z=\lambda y z, \quad 3 x+2 z=\lambda x z, \quad 4 x+2 y=\lambda x y, \quad x y z=1
$$

To solve these equations for x, y, z, λ, treat them symmetrically. Divide the first equation through by $y z$, and treat the next two equations analogously, to get

$$
3 / z+4 / y=\lambda, \quad 3 / z+2 / x=\lambda, \quad 4 / y+2 / x=\lambda
$$

which by subtracting the equations in pairs leads to $3 / z=4 / y=2 / x$; setting these all equal to k, we get $x=2 / k, y=4 / k, z=3 / k$, which shows the proportions using least cardboard are $x: y: z=2: 4: 3$.

To find the actual values of x, y, and z, we set $1 / k=m$; then substituting into $x y z=1$ gives $(2 m)(4 m)(3 m)=1$, from which $m^{3}=1 / 24, m=1 / 2 \cdot 3^{1 / 3}$, giving finally

$$
x=\frac{1}{3^{1 / 3}}, \quad y=\frac{2}{3^{1 / 3}}, \quad z=\frac{3}{2 \cdot 3^{1 / 3}} .
$$

2I-4 The equations for the cost C and the volume V are $x y+4 y z+6 x z=C$ and $x y z=V$. The Lagrange multiplier equations for the two problems are
a) $\quad y z=\lambda(y+6 z), \quad x z=\lambda(x+4 z), \quad x y=\lambda(4 y+6 x) ; \quad x y+4 y z+6 x z=72$
b) $\quad y+6 z=\mu \cdot y z, \quad x+4 z=\mu \cdot x z, \quad 4 y+6 x=\mu \cdot x y ; \quad x y z=24$

The first three equations are the same in both cases, since we can set $\mu=1 / \lambda$. Solving the first three equations in (a) symmetrically, we multiply the equations through by x, y, and z respectively, which makes the left sides equal; since the right sides are therefore equal, we get after canceling the λ,

$$
x y+6 x z=x y+4 y z=4 y z+6 x z, \quad \text { which implies } \quad x y=4 y z=6 x z
$$

a) Since the sum of the three equal products is 72 , by hypothesis, we get

$$
x y=24, \quad y z=6, \quad x z=4
$$

from the first two we get $x=4 z$, and from the first and third we get $y=6 z$, which lead to the solution $x=4, y=6, z=1$.
b) Dividing $x y=4 y z=6 x z$ by $x y z$ leads after cross-multiplication to $x=4 z, y=6 z$; since by hypothesis, $x y z=24$, again this leads to the solution $x=4, y=6, z=1$.

2J. Non-independent Variables

$\mathbf{2 J - 1}$ a) $\left(\frac{\partial w}{\partial y}\right)_{z}$ means that x is the dependent variable; get rid of it by writing $w=(z-y)^{2}+y^{2}+z^{2}=z+z^{2}$. This shows that $\left(\frac{\partial w}{\partial y}\right)_{z}=0$.
b) To calculate $\left(\frac{\partial w}{\partial z}\right)_{y}$, once again x is the dependent variable; as in part (a), we have $w=z+z^{2}$ and so $\left(\frac{\partial w}{\partial z}\right)_{y}=1+2 z$.

2J-2 a) Differentiating $z=x^{2}+y^{2}$ w.r.t. $y: \quad 0=2 x\left(\frac{\partial x}{\partial y}\right)_{z}+2 y$; so $\left(\frac{\partial x}{\partial y}\right)_{z}=-\frac{y}{x}$;
By the chain rule, $\left(\frac{\partial w}{\partial y}\right)_{z}=2 x\left(\frac{\partial x}{\partial y}\right)_{z}+2 y=2 x\left(\frac{-y}{x}\right)+2 y=0$.
Differentiating $z=x^{2}+y^{2}$ with respect to $z: \quad 1=2 x\left(\frac{\partial x}{\partial z}\right)_{y} ;$ so $\left(\frac{\partial x}{\partial z}\right)_{y}=\frac{1}{2 x}$;
By the chain rule, $\left(\frac{\partial w}{\partial z}\right)_{y}=2 x\left(\frac{\partial x}{\partial z}\right)_{y}+2 z=1+2 z$.
b) Using differentials, $\quad d w=2 x d x+2 y d y+2 z d z, \quad d z=2 x d x+2 y d y$; since the independent variables are y and z, we eliminate $d x$ by substracting the second equation from the first, which gives $\quad d w=0 d y+(1+2 z) d z$;
therefore we get

$$
\left(\frac{\partial w}{\partial y}\right)_{z}=0, \quad\left(\frac{\partial w}{\partial z}\right)_{y}=1+2 z
$$

2J-3 a) To calculate $\left(\frac{\partial w}{\partial t}\right)_{x, z}$, we see that y is the dependent variable; solving for it, we get $y=\frac{z t}{x}$; using the chain rule, $\left(\frac{\partial w}{\partial t}\right)_{x, z}=x^{3}\left(\frac{\partial y}{\partial t}\right)_{x, z}-z^{2}=x^{3} \frac{z}{x}-z^{2}=x^{2} z-z^{2}$.
b) Similarly, $\left(\frac{\partial w}{\partial z}\right)_{x, y}$ means that t is the dependent variable; since $t=\frac{x y}{z}$, we have by the chain rule, $\left(\frac{\partial w}{\partial z}\right)_{x, y}=-2 z t-z^{2}\left(\frac{\partial t}{\partial z}\right)_{x, y}=-2 z t-z^{2} \cdot \frac{-x y}{z^{2}}=-z t$.

2J-4 The differentials are calculated in equation (4).
a) Since x, z, t are independent, we eliminate $d y$ by solving the second equation for $x d y$, substituting this into the first equation, and grouping terms:
$d w=2 x^{2} y d x+\left(x^{2} z-z^{2}\right) d t+\left(x^{2} t-2 z t\right) d z$, which shows that $\left(\frac{\partial w}{\partial t}\right)_{x, z}=x^{2} z-z^{2}$.
b) Since x, y, z are independent, we eliminate $d t$ by solving the second equation for $z d t$, substituting this into the first equation, and grouping terms:
$d w=\left(3 x^{2} y-z y\right) d x+\left(x^{3}-z x\right) d y-z t d z$, which shows that $\left(\frac{\partial w}{\partial z}\right)_{x, y}=-z t$.
$\mathbf{2 J - 5}$ a) If $p v=n R T$, then $\left(\frac{\partial S}{\partial p}\right)_{v}=S_{p}+S_{T} \cdot\left(\frac{\partial T}{\partial p}\right)_{v}=S_{p}+S_{T} \cdot \frac{v}{n R}$.
b) Similarly, we have $\left(\frac{\partial S}{\partial T}\right)_{v}=S_{T}+S_{p} \cdot\left(\frac{\partial p}{\partial T}\right)_{v}=S_{T}+S_{p} \cdot \frac{n R}{v}$.
$\mathbf{2 J - 6}$ a) $\left(\frac{\partial w}{\partial u}\right)_{x}=3 u^{2}-v^{2}-u \cdot 2 v\left(\frac{\partial v}{\partial u}\right)_{x}=3 u^{2}-v^{2}-2 u v$.

$$
\left(\frac{\partial w}{\partial x}\right)_{u}=-u \cdot 2 v\left(\frac{\partial v}{\partial x}\right)_{u}=-2 u v
$$

b) $\quad d w=\left(3 u^{2}-v^{2}\right) d u-2 u v d v ; \quad d u=x d y+y d x ; \quad d v=d u+d x$; for both derivatives, u and x are the independent variables, so we eliminate $d v$, getting $d w=\left(3 u^{2}-v^{2}\right) d u-2 u v(d u+d x)=\left(3 u^{2}-v^{2}-2 u v\right) d u-2 u v d x$,
whose coefficients are $\left(\frac{\partial w}{\partial u}\right)_{x}$ and $\left(\frac{\partial w}{\partial x}\right)_{u}$.

2J-7 Since we need both derivatives for the gradient, we use differentials.

$$
d f=2 d x+d y-3 d z \quad \text { at } P ; \quad d z=2 x d x+d y=2 d x+d y \quad \text { at } P
$$

the independent variables are to be x and z, so we eliminate $d y$, getting

$$
d f=0 d x-2 d z \quad \text { at the point }(x, z)=(1,1) . \quad \text { So } \quad \nabla g=\langle 0,-2\rangle \quad \text { at }(1,1) .
$$

2J-8 To calculate $\left(\frac{\partial w}{\partial r}\right)_{\theta}$, note that $w=r|\sin \theta|$. Therefore, $\left(\frac{\partial w}{\partial r}\right)_{\theta}=|\sin \theta|$.

2K. Partial Differential Equations

$\mathbf{2 K - 1} w=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$. If $(x, y) \neq(0,0)$, then

$$
\begin{aligned}
& w_{x x}=\frac{\partial}{\partial x}\left(w_{x}\right)=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \\
& w_{y y}=\frac{\partial}{\partial y}\left(w_{y}\right)=\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}},
\end{aligned}
$$

Therefore w satisfies the two-dimensional Laplace equation, $w_{x x}+w_{y y}=0$; we exclude the point $(0,0)$ since $\ln 0$ is not defined.
$\mathbf{2 K - 2}$ If $w=\left(x^{2}+y^{2}+z^{2}\right)^{n}$, then $\frac{\partial}{\partial x}\left(w_{x}\right)=\frac{\partial}{\partial x}\left(2 x \cdot n\left(x^{2}+y^{2}+z^{2}\right)^{n-1}\right)$

$$
=2 n\left(x^{2}+y^{2}+z^{2}\right)^{n-1}+4 x^{2} n(n-1)\left(x^{2}+y^{2}+z^{2}\right)^{n-2}
$$

We get $w_{y y}$ and $w_{z z}$ by symmetry; adding and combining, we get

$$
\begin{aligned}
& w_{x x}+w_{y y}+w_{z z}=6 n\left(x^{2}+y^{2}+z^{2}\right)^{n-1}+4\left(x^{2}+y^{2}+z^{2}\right) n(n-1)\left(x^{2}+y^{2}+z^{2}\right)^{n-2} \\
& \quad=2 n(2 n+1)\left(x^{2}+y^{2}+z^{2}\right)^{n-1}, \text { which is identically zero if } n=0, \text { or if } n=-1 / 2
\end{aligned}
$$

2K-3 a) $w=a x^{2}+b x y+c y^{2} ; \quad w_{x x}=2 a, \quad w_{y y}=2 c$.

$$
w_{x x}+w_{y y}=0 \quad \Rightarrow \quad 2 a+2 c=0, \text { or } c=-a
$$

Therefore all quadratic polynomials satisfying the Laplace equation are of the form

$$
a x^{2}+b x y-a y^{2}=a\left(x^{2}-y^{2}\right)+b x y
$$

i.e., linear combinations of the two polynomials $f(x, y)=x^{2}-y^{2}$ and $g(x, y)=x y$.

2K-4 The one-dimensional wave equation is $w_{x x}=\frac{1}{c^{2}} w_{t t}$. So

$$
\begin{aligned}
w=f(x+c t)+g(x-c t) & \Rightarrow w_{x x}=f^{\prime \prime}(x+c t)+g^{\prime \prime}(x-c t) \\
& \Rightarrow w_{t}=c f^{\prime}(x+c t)+-c g^{\prime}(x-c t) \\
& \Rightarrow w_{t t}=c^{2} f^{\prime \prime}(x+c t)+c^{2} g^{\prime \prime}(x-c t)=c^{2} w_{x x}
\end{aligned}
$$

which shows w satisfies the wave equation.
2K-5 The one-dimensional heat equation is $w_{x x}=\frac{1}{\alpha^{2}} w_{t}$. So if $w(x, t)=\sin k x e^{r} t$, then

$$
\begin{gathered}
w_{x x}=e^{r t} \cdot k^{2}(-\sin k x)=-k^{2} w \\
w_{t}=r e^{r t} \sin k x=r w
\end{gathered}
$$

Therefore, we must have $-k^{2} w=\frac{1}{\alpha^{2}} r w$, or $r=-\alpha^{2} k^{2}$.
However, from the additional condition that $w=0$ at $x=1$, we must have

$$
\sin k e^{r t}=0
$$

Therefore $\sin k=0$, and so $k=n \pi$, where n is an integer.
To see what happens to w as $t \rightarrow \infty$, we note that since $|\sin k x| \leq 1$,

$$
|w|=e^{r t}|\sin k x| \leq e^{r t}
$$

Now, if $k \neq 0$, then $r=-\alpha^{2} k^{2}$ is negative and $e^{r t} \rightarrow 0$ as $t \rightarrow \infty$; therefore $|w| \rightarrow 0$.
Thus w will be a solution satisfying the given side conditions if $k=n \pi$, where n is a non-zero integer, and $r=-\alpha^{2} k^{2}$.
18.02 Notes and Exercises by A. Mattuck with the assistance of T.Shifrin and S. LeDuc, and including a section on non-independent variables by Bjorn Poonen.
©M.I.T. 2010-2014

