Unit 6. Additional Topics

6A. Indeterminate forms; L'Hospital's rule

6A-1 a) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=\lim _{x \rightarrow 0} \frac{3 \cos 3 x}{1}=3$
b) $\lim _{x \rightarrow 0} \frac{\cos (x / 2)-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{(-1 / 2) \sin (x / 2)}{2 x}=\lim _{x \rightarrow 0} \frac{(-1 / 4) \cos (x / 2)}{2}=-1 / 8$
c) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$
d) $\lim _{x \rightarrow 0} \frac{x^{2}-3 x-4}{x+1}=-4$. Can't use L'Hospital's rule.
e) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{5 x}=\lim _{x \rightarrow 0} \frac{1 /\left(1+x^{2}\right)}{5}=1 / 5$
f) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{6 x}=\lim _{x \rightarrow 0} \frac{\cos x}{6}=1 / 6$
g) $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}=\lim _{x \rightarrow 1} \frac{a x^{a-1}}{b x^{b-1}}=a / b$
h) $\lim _{x \rightarrow 1} \frac{\tan (x)}{\sin (3 x)}=\frac{\tan 1}{\sin 3}$. Can't use L'Hospital's rule.
i) $\lim _{x \rightarrow \pi} \frac{\ln \sin (x / 2)}{x-\pi}=\lim _{x \rightarrow \pi} \frac{(1 / 2) \cot (x / 2)}{1}=0$
j) $\lim _{x \rightarrow \pi} \frac{\ln \sin (x / 2)}{(x-\pi)^{2}}=\lim _{x \rightarrow \pi} \frac{(1 / 2) \cot (x / 2)}{2(x-\pi)}=\lim _{x \rightarrow \pi} \frac{(-1 / 4) \csc ^{2}(x / 2)}{2}=-1 / 8$

6A-2 a) $x^{x}=e^{x \ln x} \rightarrow e^{0}=1$ as $x \rightarrow 0^{+}$because
$\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}-x=0$
b) $x^{1 / x} \rightarrow 0$ as $x \rightarrow 0^{+}$because $x \rightarrow 0$ and $1 / x \rightarrow \infty$.

Slow way using logs:
$x^{1 / x}=e^{\frac{\ln x}{x}} \rightarrow e^{-\infty}=0$ as $x \rightarrow 0^{+}$because
$\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}=\frac{-\infty}{0^{+}}=-\infty$. (Can't use L'Hospital's rule.)
c) Can't use L'Hospital's rule. Here are two ways:
$(1 / x)^{\ln x} \rightarrow(\infty)^{-\infty}=0$ or $(1 / x)^{\ln x}=e^{\ln x \ln (1 / x)}=e^{-(\ln x)^{2}} \rightarrow e^{-\infty}=0$
d) $(\cos x)^{1 / x}=e^{\frac{\ln \cos x}{x}} \rightarrow e^{0}=1$ as $x \rightarrow 0^{+}$because

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln \cos x}{x}=\lim _{x \rightarrow 0^{+}} \frac{-\tan x}{1}=0
$$

e) $x^{1 / x}=e^{\frac{\ln x}{x}} \rightarrow e^{0}=1$ as $x \rightarrow \infty$ because

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0
$$

f) $\left(1+x^{2}\right)^{1 / x}=e^{\frac{\ln \left(1+x^{2}\right)}{x}} \rightarrow e^{0}=1$ as $x \rightarrow 0^{+}$because

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+x^{2}\right)}{x}=\lim _{x \rightarrow 0^{+}} \frac{2 x /\left(1+x^{2}\right)}{1}=0
$$

g) $(1+3 x)^{10 / x}=e^{\frac{10 \ln (1+3 x)}{x}} \rightarrow e^{30}$ as $x \rightarrow 0^{+}$because

$$
\lim _{x \rightarrow 0^{+}} \frac{10 \ln (1+3 x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{10 \cdot 3 /(1+3 x)}{1}=30
$$

h) $\lim _{x \rightarrow \infty} \frac{x+\cos x}{x}=(?) \lim _{x \rightarrow \infty} \frac{1-\sin x}{1}$ But the second limit does not exist, so L'Hospital's rule is inconclusive. But the first limit does exist after all:

$$
\lim _{x \rightarrow \infty} \frac{x+\cos x}{x}=\lim _{x \rightarrow \infty} 1+\frac{\cos x}{x}=1
$$

because

$$
\frac{|\cos x|}{x} \leq \frac{1}{x} \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

Commentary: L'Hospital's rule does a poor job with oscillatory functions.
i) Fast way: Substitute $u=1 / x$.

$$
\lim _{x \rightarrow \infty} x \sin \frac{1}{x}=\lim _{u \rightarrow 0} \frac{\sin u}{u}=\lim _{u \rightarrow 0} \frac{\cos u}{1}=1
$$

Slower way:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x \sin \frac{1}{x}=\lim _{x \rightarrow \infty} \frac{\sin (1 / x)}{1 / x}= & \lim _{x \rightarrow \infty} \frac{\left(-1 / x^{2}\right) \cos (1 / x)}{-1 / x^{2}}=\cos 0=1 \\
\text { j) }\left(\frac{x}{\sin x}\right)^{1 / x^{2}}=e^{\frac{\ln (x / \sin x)}{x^{2}}} \rightarrow & e^{\frac{1}{6}} \text { because } \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln (x / \sin x)}{x^{2}}=1 / 6
\end{aligned}
$$

This is a difficult limit. Although it can be done by L'Hospital's rule the easiest way to work it out is with quadratic (and even cubic!) approximations:

$$
\frac{x}{\sin x} \approx \frac{x}{x-x^{3} / 6}=\frac{1}{1-x^{2} / 6} \approx 1+x^{2} / 6
$$

Hence,

$$
\ln (x / \sin x) \approx \ln \left(1+x^{2} / 6\right) \approx x^{2} / 6
$$

Therefore,

$$
\frac{1}{x^{2}} \ln (x / \sin x) \rightarrow 1 / 6 \quad \text { as } x \rightarrow 0
$$

k) Obvious cases: If the exponents are positive (or one 0 and the other positive) then the limit is infinite. If the exponents are both negative (or one 0 and the other negative) then the limit is 0 . Also if both exponents are 0 the limit is 1 .
(continued \rightarrow)

The remaining cases are the ones where a and b have opposite sign. In both cases a wins. In other words, $a<0$ implies the limit is 0 and $a>0$ implies the limit is ∞. To show this requires only one use of L'Hospital's rule. For $\alpha>0$,

$$
\lim _{x \rightarrow \infty} \frac{x^{\alpha}}{\ln x}=\lim _{x \rightarrow \infty} \frac{\alpha x^{\alpha-1}}{1 / x}=\lim _{x \rightarrow \infty} \alpha x^{\alpha}=\infty
$$

If $a>0$ and $b<0$, let $c=-b>0$. Then

$$
x^{a}(\ln x)^{b}=\left(\frac{x^{a / c}}{\ln x}\right)^{c} \rightarrow \infty \quad \text { as } x \rightarrow \infty
$$

using $\alpha=a / c>0$. The case $a<0$ and $b>0$ is the reciprocal so it tends to 0 .
6A-3 Using L'Hospital's rule and $\frac{d}{d a} x^{a+1}=x^{a+1} \ln x$,

$$
\lim _{a \rightarrow-1}\left(\frac{x^{a+1}}{a+1}-\frac{1}{a+1}\right)=\lim _{a \rightarrow-1} \frac{x^{a+1}-1}{a+1}=\lim _{a \rightarrow-1} \frac{x^{a+1} \ln x}{1}=\ln x
$$

6A-4

$$
\int_{1}^{x} t^{a} \ln t d t=\frac{x^{a+1} \ln x}{a+1}-\frac{x^{a+1}}{(a+1)^{2}}+\frac{1}{(a+1)^{2}}
$$

Therefore, using L'Hospital's rule and $\frac{d}{d a} x^{a+1}=x^{a+1} \ln x$,

$$
\begin{aligned}
\lim _{a \rightarrow-1} \int_{1}^{x} t^{a} \ln t d t & =\lim _{a \rightarrow-1} \frac{(a+1) x^{a+1} \ln x-x^{a+1}+1}{(a+1)^{2}} \\
& =\lim _{a \rightarrow-1} \frac{(a+1) x^{a+1}(\ln x)^{2}}{2(a+1)} \\
& =(\ln x)^{2} / 2=\int_{1}^{x} t^{-1} \ln t d t
\end{aligned}
$$

6A-5 You can't use L'Hospital's rule for $\lim _{x \rightarrow 0} \frac{6 x-4}{2-2 x}$ because the nominator and denominator are not going to zero as $x \rightarrow 0$. The first equality is true, but the second one is false.

6A-6 a) $y=x e^{-x}$ is defined on $-\infty<x<\infty$.

$$
y^{\prime}=(1-x) e^{-x} \text { and } y^{\prime \prime}=(-2+x) e^{-x}
$$

Therefore, $y^{\prime}>0$ for $x<1$ and $y^{\prime}<0$ for $x>1$; $y^{\prime \prime}>0$ for $x>2$ and $y^{\prime \prime}<0$ for $x<2$.
Endpoint values: $y \rightarrow-\infty$ as $x \rightarrow-\infty$, because $e^{-x} \rightarrow \infty$ as $x \rightarrow-\infty$. By L'Hospital's rule,

$$
\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0
$$

Critical value: $y(1)=1 / e$.
Graph: $(-\infty,-\infty) \nearrow(1,1 / e) \searrow(\infty, 0)$.

Concave up on: $2<x<\infty$, concave down on: $-\infty<x<2$.

b) $y=x \ln x$ is defined on $0<x<\infty$.

$$
y^{\prime}=\ln x+1, \quad y^{\prime \prime}=1 / x
$$

Therefore, $y^{\prime}>0$ for $x>1 / e$ and $y^{\prime}<0$ for $x<1 / e ; y^{\prime \prime}>0$ for all $x>0$.
Endpoint values: As $x \rightarrow \infty$, both x and $\ln x$ tend to infinity, so $y \rightarrow \infty$. By L'Hospital's rule,

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{1}=0
$$

Critical value: $y(1 / e)=-1 / e$.

Graph: $(0,0) \searrow(1 / e,-1 / e) \nearrow(\infty, \infty)$, crossing zero at $x=e$. Concave up for all $x>0$.
c) $y=x / \ln x$ is defined on $0<x<\infty$, except for $x=1$.

$$
y^{\prime}=\frac{\ln x-1}{(\ln x)^{2}}
$$

Thus, $y^{\prime}<0$ for $0<x<1$ and for $1<x<e$ and $y^{\prime}>0$ for $x>e$;
Endpoint values: $y \rightarrow 0$ as $x \rightarrow 0^{+}$because $x \rightarrow 0$ and $1 / \ln x \rightarrow 0$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow \infty} \frac{x}{\ln x}=\lim _{x \rightarrow \infty} \frac{1}{1 / x}=\infty
$$

Singular values: $y\left(1^{+}\right)=\infty$ and $y\left(1^{-}\right)=-\infty$.
Critical value: $y(e)=e$.
Graph: $(0,0) \searrow(1,-\infty) \uparrow(1, \infty) \searrow(e, e) \nearrow(\infty, \infty)$.
To determine where it is convex and concave:

$$
y^{\prime \prime}=\frac{2-\ln x}{x(\ln x)^{3}}
$$

We have $y^{\prime \prime}=0$ when $\ln x=2$, i.e., when $x=e^{2}$. From this,
$y^{\prime \prime}<0$ for $0<x<1$ and for $x>e^{2}$ and $y^{\prime \prime}>0$ for $1<x<e^{2}$.
Concave (down) on: $0<x<1$ and $x>e^{2}$
Convex (concave up) on: $1<x<e^{2}$
Inflection point: $\left(e^{2}, e^{2} / 2\right)$ (too far to the right to show on the graph)

6B. Improper integrals

6B-1 $\frac{d x}{\sqrt{x^{3}+5}}<\frac{1}{\sqrt{x^{3}}}$ for $x>0$
$\int_{1}^{\infty} \frac{d x}{\sqrt{x^{3}+5}}<\int_{1}^{\infty} \frac{d x}{x^{3 / 2}}$ which converges, by INT (4)
Answer: converges
6B-2 $\frac{x^{2} d x}{x^{3}+2} \simeq \frac{1}{x}$ if $x \gg 1$, so we guess divergence.

$$
\begin{aligned}
& \frac{x^{2} d x}{x^{3}+2}>\frac{1}{2 x} \text { if } 2 x^{3}>x^{3}+2 \text { or } x^{3}>2 \text { or } x>2^{1 / 3} \\
& \int_{2}^{\infty} \frac{x^{2} d x}{x^{3}+2}>\frac{1}{2} \int_{2}^{\infty} \frac{d x}{x}, \text { which diverges by INT (4). } \\
& \int_{2}^{\infty} \frac{x^{2} d x}{x^{3}+2} \text { diverges, by comp.test, and so does } \int_{0}^{\infty} \frac{x^{2} d x}{x^{3}+2} \text { by INT (3). }
\end{aligned}
$$

6B-3 $\int_{0}^{1} \frac{d x}{x^{3}+x^{2}}$ integrand blows up at $x=0$
$\frac{1}{x^{3}+x^{2}}=\frac{1}{x^{2}(x+1)} \sim \frac{1}{x^{2}}$ when $x \simeq 0$
So we guess divergence.
$\frac{1}{x^{3}+x^{2}}>\frac{1}{2 x^{2}}$ if $2 x^{2}>x^{3}+x^{2}$ or $x^{2}>x^{3} ;$ true if $0<x<1$.
$\Longrightarrow \int_{0}^{1} \frac{d x}{x^{3}+x^{2}}>\frac{1}{2} \int_{0}^{1} \frac{d x}{x^{2}}$ which diverges by INT (6)
6B-4 $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{3}}}$ blows up at $x=1$
$\frac{1}{\sqrt{1-x^{3}}}=\frac{1}{\sqrt{(1-x)\left(1+x+x^{2}\right)}} \sim \frac{1}{\sqrt{3} \sqrt{1-x}}$ for $x \simeq 1$
So we guess convergence.
$\frac{1}{\sqrt{1-x^{3}}}<\frac{1}{\sqrt{1-x}}$ if $x^{3}<x$ OK if $0<x<1$
$\frac{1}{\sqrt{1-x}}$ converges by INT (6), so $\frac{1}{\sqrt{1-x^{3}}}$ also converges by comp.test.
6B-5 $\int_{0}^{\infty} \frac{e^{-x} d x}{x}$ is improper at both ends.
At the ∞ end it converges, since

$$
\frac{e^{-x} d x}{x}<e^{-x} \text { if } x>1 \text { and } \int_{0}^{\infty} e^{-x} \text { converges. }
$$

At the 0 end: trouble! $\frac{e^{-x} d x}{x} \sim \frac{1}{x}$. So we guess divergence.
$\frac{e^{-x} d x}{x}>\frac{1}{4 x}$ on $0<x<1 \Longrightarrow \int_{0}^{\infty} \frac{e^{-x} d x}{x}>\frac{1}{4} \int_{0}^{\infty} \frac{d x}{x}$ divergent.
$\Longrightarrow \int_{0}^{\infty} \frac{e^{-x} d x}{x}$ diverges -one end is infinite (the 0 end!)

6B-6 $\int_{1}^{\infty} \frac{\ln x d x}{x^{2}}$
Here $\ln x$ grows so slowly, that we suspect convergence.
$\frac{\ln x}{x^{2}}<\frac{x}{x^{2}}$ is not convergent.
How about $\frac{\ln x}{x^{2}}<\frac{1}{x^{3 / 2}}$? if $x \gg 1$. This says $\frac{\ln x}{\sqrt{x}}<1$ if $x \gg 1$ and this is true, since
$\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{1 / x}{1 / 2 \sqrt{x}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0$
$\Longrightarrow \int_{1}^{\infty} \frac{\ln x d x}{x^{2}}<\frac{x}{x^{3 / 2}}$ converges, by INT (4).
So $\int_{1}^{\infty} \frac{\ln x d x}{x^{2}}$ converges by comp.test.
These have been written out in detail, to review the reasoning. Your own solutions don't have to be so detailed.

6B-7 a) $\int_{0}^{\infty} e^{-8 x} d x=-\left.(1 / 8) e^{-8 x}\right|_{0} ^{\infty}=1 / 8 \quad$ convergent
b) $\int_{1}^{\infty} x^{-n} d x=\left.\frac{x^{-n+1}}{-n+1}\right|_{1} ^{\infty}=\frac{1}{n-1} \quad$ convergent $(n>1)$
c) divergent
d) $\int_{0}^{2} \frac{x d x}{\sqrt{4-x^{2}}}=-\left.\left(4-x^{2}\right)^{1 / 2}\right|_{0} ^{2}=2 \quad$ convergent
e) $\int_{0}^{2} \frac{d x}{\sqrt{2-x}}=-\left.2(2-x)^{1 / 2}\right|_{0} ^{2}=2 \sqrt{2} \quad$ convergent
f) $\int_{e}^{\infty} \frac{d x}{x(\ln x)^{2}}=-\left.(\ln x)^{-1}\right|_{e} ^{\infty}=1 \quad$ convergent
g) $\int_{0}^{1} \frac{d x}{x^{1 / 3}}=\left.(3 / 2) x^{2 / 3}\right|_{0} ^{1}=\frac{3}{2} \quad$ convergent
h) divergent (at $x=0$)
i) divergent (at $x=0$)
j) Convergent because $\ln x$ tends to $-\infty$ more slowly than any power as $x \rightarrow 0^{+}$.

Integrate by parts

$$
\int_{0}^{1} \ln x d x=x \ln x-\left.x\right|_{0} ^{1}=-1
$$

(Need L'Hospital's rule to check that $x \ln x \rightarrow 0$ as $x \rightarrow 0^{+}$.)
k) Convergent because $\left|e^{-2 x} \cos x\right|<e^{-2 x}$. Evaluate by integrating by parts twice (as in E30/4).

$$
\int_{0}^{\infty} e^{-2 x} \cos x d x=\frac{1}{5} e^{-2 x} \sin x-\left.\frac{2}{5} e^{-2 x} \cos x\right|_{0} ^{\infty}=2 / 5
$$

1) divergent $\left(\int_{e}^{\infty} \frac{d x}{x \ln x}=\left.\ln \ln x\right|_{e} ^{\infty}=\infty\right)$
m) $\int_{0}^{\infty} \frac{d x}{(x+2)^{3}}=\left.(-1 / 2)(x+2)^{-2}\right|_{0} ^{\infty}=1 / 8 \quad$ convergent
n) divergent (at $x=2$)
o) divergent (at $x=0$)
p) divergent (at $x=\pi / 2$)

6 6-8 a) $\lim _{x \rightarrow \infty} \frac{\int_{0}^{x} e^{t^{2}} d t}{e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{e^{x^{2}}}{2 x e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{2 x}=0$ (L'Hospital and FT2)
b) $\lim _{x \rightarrow \infty} \frac{\int_{0}^{x} e^{t^{2}} d t}{e^{x^{2}} / x}=\lim _{x \rightarrow \infty} \frac{e^{x^{2}}}{2 x^{2} e^{x^{2}}-e^{x^{2}} / x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{2-\left(1 / x^{2}\right)}=\frac{1}{2}$
c) $\lim _{x \rightarrow \infty} \int_{0}^{x} e^{-t^{2}} d t=A$ a finite number >0 because the integral is convergent. But $e^{x^{2}} \rightarrow \infty$, so the whole limit tends to infinity.
$\mathrm{d})=\lim _{a \rightarrow 0^{+}} \frac{\int_{a}^{1} x^{-1 / 2} d x}{1 / \sqrt{a}}=\lim _{a \rightarrow 0^{+}} \frac{-1 / \sqrt{a}}{(-1 / 2) a^{-3 / 2}}=\lim _{a \rightarrow 0^{+}} 2 a=0$ (L'Hospital and FT2)
e) $=\lim _{a \rightarrow 0^{+}} \frac{\int_{a}^{1} x^{-3 / 2} d x}{1 / \sqrt{a}}=\lim _{a \rightarrow 0^{+}} \frac{-a^{-3 / 2}}{(-1 / 2) a^{-3 / 2}}=2$ (L'Hospital and FT2)
(f) $\lim _{b \rightarrow(\pi / 2)^{+}}(b-\pi / 2) \int_{0}^{b} \frac{d x}{1-\sin x}=\lim _{b \rightarrow(\pi / 2)^{+}} \frac{\int_{0}^{b} \frac{d x}{1-\sin x}}{1 /(b-\pi / 2)}$

$$
=\lim _{b \rightarrow(\pi / 2)^{+}} \frac{1 /(1-\sin b)}{-1 /(b-\pi / 2)^{2}}
$$

$$
=\lim _{b \rightarrow(\pi / 2)^{+}} \frac{(b-\pi / 2)^{2}}{\sin b-1}
$$

$$
=\lim _{b \rightarrow(\pi / 2)^{+}} \frac{2(b-\pi / 2)}{\cos b}
$$

$$
=\lim _{b \rightarrow(\pi / 2)^{+}} \frac{2}{-\sin b}=-2
$$

6C. Infinite Series

$\mathbf{6 C - 1}$ a) $1+\frac{1}{5}+\frac{1}{25}+\cdots=1+\frac{1}{5}+\frac{1}{5^{2}}+\cdots=\frac{1}{1-\frac{1}{5}}=\frac{5}{4}$
b) $8+2+\frac{1}{2}+\cdots=8\left(1+\frac{1}{4}+\frac{1}{4^{2}}+\cdots\right)=8\left(\frac{1}{1-\frac{1}{4}}\right)=\frac{6 B}{3}$
c) $\frac{1}{4}+\frac{1}{5}+\cdots=\frac{1}{4}\left(1+\frac{4}{5}+\left(\frac{4}{5}\right)^{2}+\cdot\right)=\frac{1}{4}\left(\frac{1}{1-\frac{4}{5}}\right)=\frac{5}{4}$
d) $0.4444 \cdots=0.4\left(1+0.1+0.1^{2}+0.1^{3}+\cdots\right)=0.4\left(\frac{1}{1-0.1}\right)=0.4\left(\frac{1}{0.9}\right)=\frac{4}{9}$
e) $0.0602602602 \cdots=0.0602(1+0.001+0.000001+\cdots)=0.0602\left(\frac{1}{1-0.001}\right)$
$=\frac{0.0602}{0.999}=\frac{301}{4995}$
$\mathbf{6 C - 2}$ a) $1+1 / 2+1 / 3+1 / 4+\cdots$
clearly, we have $1>\int_{1}^{2} \frac{1}{x} d x, \frac{1}{2}>\int_{2}^{3} \frac{1}{x} d x, \cdots$
so we will have $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots>\int_{1}^{2} \frac{1}{x} d x+\int_{2}^{3} \frac{1}{x} d x+\int_{3}^{4} \frac{1}{x} d x+\int_{4}^{5} \frac{1}{x} d x+\cdots=$ $\int_{1}^{\infty} \frac{1}{x} d x$, which is divergent, so the infinite series is divergent.
b) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$

Case 1: $p \leq 1 \cdot \frac{1}{n^{p}}>\int_{n}^{n+1} \frac{d x}{x^{p}}$
$\Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n^{p}}>\int_{1}^{\infty} \frac{d x}{x^{p}}$, which is divergent, so the infinite series is divergent.
Case 2: $p>1$
$\frac{1}{n^{p}}<\int_{n-1}^{n} \frac{d x}{x^{p}} \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n^{p}}<1+\int_{1}^{\infty} \frac{d x}{x^{p}}$, which is convergent. So the infinite series is convergent.
c) $1 / 2+1 / 4+1 / 6+1 / 8+\cdots=(1 / 2)(1+1 / 2+1 / 3+1 / 4+\cdots)$. So from a), the series is divergent.
d) $1+1 / 3+1 / 5+1 / 7+\cdots$
$1>1 / 2,1 / 3>1 / 4,1 / 5>1 / 6,1 / 7>1 / 8, \cdots$
So $1+1 / 3+1 / 5+1 / 7+\cdots>1 / 2+1 / 4+1 / 6+1 / 8+\cdots$ which is divergent from $c)$ Thus the series diverges.

$$
\begin{aligned}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots & =\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots \\
& =\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}+\cdots \\
& <\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \\
& <\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots
\end{aligned}
$$

which is convergent by b). So the infinite series is convergent.
f) $n / n!=1 /(n-1)!<1 /(n-1)(n-2) \simeq 1 / n^{2}$ for $n \gg 1$. So convergent by comparison with b).
g) Geometric series with ratio $(\sqrt{5}-1) / 2<1$, so the series is convergent.
h) Geometric series with ratio $(\sqrt{5}+1)(2 \sqrt{5})<1$, so the series is convergent.
i) Larger than $\sum 1 / n$ for $n \geq 3$, so divergent by part b).
j) $\ln n$ grows more slowly than any power. For instance,

$$
\ln n<n^{1 / 2} \Longrightarrow \frac{\ln n}{n^{2}}<n^{-3 / 2} \quad \text { for } n \gg 1
$$

The series $\sum n^{-3 / 2}$ converges by part b), so this series also converges.
k) Converges because $\frac{n+2}{n^{4}-5} \simeq \frac{1}{n^{3}}$, and $\sum n^{-3}$ converges by part b).
l) $\frac{(n+2)^{1 / 3}}{\left(n^{4}+5\right)^{1 / 3}} \simeq \frac{n^{1 / 3}}{n^{4 / 3}} \simeq \frac{1}{n}$. Therefore this series diverges by comparison with $\sum 1 / n$.
m) Quadratic approximation implies $\cos (1 / n) \approx 1-1 / 2 n^{2}$ and hence

$$
\ln \left(\cos \frac{1}{n}\right) \simeq-1 / 2 n^{2} \quad \text { as } n \rightarrow \infty
$$

Hence the series converges by comparison with $\sum 1 / n^{2}$ from part b).
n) e^{-n} beats n^{2} by a large margin. For example, L'Hospital's rule implies

$$
e^{-n / 2} n^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore for large $n, n^{2} e^{-n}=n^{2} e^{-n / 2} e^{-n / 2}<e^{-n / 2}$ and $\sum e^{-n / 2}$ is a convergent geometric series. Therefore the original series converges by comparison.
o) Just as in part (n), $e^{-\sqrt{n}}$ beats n^{2} by a large margin. L'Hospital's rule implies

$$
e^{-m / 2} m^{4} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Put $m=\sqrt{n}$ to get

$$
e^{-\sqrt{n} / 2} n^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore for large $n, n^{2} e^{-\sqrt{n}}=n^{2} e^{-\sqrt{n} / 2} e^{-\sqrt{n} / 2}<e^{-\sqrt{n} / 2}$. Moreover, we also have

$$
e^{-\sqrt{n}}<1 / n^{2} \quad n \text { large }
$$

Thus the sum is dominated by $\sum e^{-\sqrt{n} / 2}<\sum 1 / n^{2}$ and is convergent by comparison with part b).
$6 \mathrm{C}-3$ a)

$$
\ln n=\int_{1}^{n} \frac{d x}{x}<\text { Upper sum }=1+\frac{1}{2}+\cdots \frac{1}{n-1}<1+\frac{1}{2}+\cdots \frac{1}{n}
$$

In other words,

$$
\ln n<1+\frac{1}{2}+\cdots \frac{1}{n}
$$

On the other hand,

$$
\ln n=\int_{1}^{n} \frac{d x}{x}>\text { Lower sum }=\frac{1}{2}+\cdots \frac{1}{n}
$$

Adding 1 to both sides,

$$
1+\ln n>1+\frac{1}{2}+\cdots \frac{1}{n}
$$

b) Need at least $\ln n=999$

$$
\text { Time }>10^{-10} e^{999} \approx 7 \times 10^{423} \text { seconds }
$$

This is far, far longer than the estimated time from the "big bang."

