
Unit 4. Applications of integration

4A. Areas between curves.

4A-1 a)

∫ 1

1/2

(3x − 1 − 2x2)dx = (3/2)x2 − x − (2/3)x3
∣

∣

1

1/2
= 1/24

b) x3 = ax =⇒ x = ±a or x = 0. There are two enclosed pieces (−a < x < 0 and
0 < x < a) with the same area by symmetry. Thus the total area is:

2

∫

√
a

0

(ax − x3)dx = ax2 − (1/2)x4
∣

∣

√
a

0
= a2/2

1

5/2

1 2

1

a1/2a1/2

a3/2

a3/2

(1/2,1/2)

(1,2)

1a 1b 1c 1d

c) x + 1/x = 5/2 =⇒ x2 + 1 = 5x/2 =⇒ x = 2 or 1/2. Therefore, the area is

∫ 2

1/2

[5/2 − (x + 1/x)]dx = 5x/2 − x2/2 − lnx
∣

∣

2

1/2
= 15/8 − 2 ln 2

d)

∫ 1

0

(y − y2)dy = y2/2 − y3/3
∣

∣

1

0
= 1/6

4A-2 First way (dx):

∫ 1

−1

(1 − x2)dx = 2

∫ 1

0

(1 − x2)dx = 2x − 2x3/3
∣

∣

1

0
= 4/3

Second way (dy): (x = ±√
1 − y)

∫ 1

0

2
√

1 − ydy = (4/3)(1 − y)3/2

∣

∣

∣

1

0

= 4/3

-1                 1

1

y = 1-x 2

x =  1-y
x = - 1-y

4A-3 4 − x2 = 3x =⇒ x = 1 or − 4. First way (dx):

∫ 1

−4

(4 − x2 − 3x)dx = 4x − x3/3 − 3x2/2
∣

∣

1

−4
= 125/6

Second way (dy): Lower section has area

∫ 3

−12

(y/3 +
√

4 − ydy = y2/6 − (2/3)(4 − y)3/2

∣

∣

∣

3

−12

= 117/6 (-4,-12)

(1,3)

x=y
3

x= 4-yx=- 4-y

4
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Upper section has area

∫ 4

3

2
√

4 − ydy = −(4/3)(4 − y)3/2

∣

∣

∣

4

3

= 4/3

(See picture for limits of integration.) Note that 117/6 + 4/3 = 125/6.

4A-4 sin x = cosx =⇒ x = π/4 + kπ. So the area is

∫ 5π/4

π/4

(sin x − cosx)dx = (− cosx − sinx)|5π/4

π/4
= 2

√
2

π/4                     
5π/4

4B. Volumes by slicing; volumes of revolution

4B-1 a)

∫ 1

−1

πy2dx =

∫ 1

−1

π(1 − x2)2dx = 2π

∫ 1

0

(1 − 2x2 + x4)dx

= 2π(x − 2x3/3 + x5/5)
∣

∣

1

0
= 16π/15

b)
∫ a

−a πy2dx =
∫ a

−a π(a2 − x2)2dx = 2π
∫ a

0
(a4 − 2a2x2 + x4)dx

= 2π(a4x − 2a2x3/3 + x5/5)
∣

∣

a

0
= 16πa5/15

c)

∫ 1

0

πx2dx = π/3

d)

∫ a

0

πx2dx = πa3/3

e)

∫ 2

0

π(2x− x2)2dx =

∫ 2

0

π(4x2 − 4x3 + x4)dx = π(4x3/3 − x4 + x5/5)
∣

∣

2

0
= 16π/15

(Why (e) the same as (a)? Complete the square and translate.)

1b 1d 1f 1g 1h

(for 1a, set a = 1) (for 1c, set a = 1) (for 1e, set a = 1)

y=   ax y  = b  (1 − x  /a  )2 2 2 2

∆−a         x                          a a0

y = a − x 2 2 y = x y = 2ax − x 2

0 a
0

b

a

f)
∫ 2a

0
π(2ax − x2)2dx =

∫ 2a

0
π(4a2x2 − 4ax3 + x4)dx

= π(4a2x3/3 − ax4 + x5/5)
∣

∣

2

0
= 16πa5/15

(Why is (f) the same as (b)? Complete the square and translate.)

g)

∫ a

0

axdx = πa3/2
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h)

∫ a

0

πy2dx =

∫ a

0

πb2(1 − x2/a2)dx = πb2(x − x3/3a2)
∣

∣

a

0
= 2πb2a/3

4B-2 a)

∫ 1

0

π(1 − y)dy = π/2 b)

∫ a2

0

π(a2 − y)dy = πa4/2

c)

∫ 1

0

π(1 − y2)dy = 2π/3 d)

∫ a

0

π(a2 − y2)dy = 2πa3/3

e) x2 − 2x + y = 0 =⇒ x = 1 ±√
1 − y. Using the method of washers:

∫ 1

0

π[(1 +
√

1 − y)2 − (1 −
√

1 − y)2]dy =

∫ 1

0

4π
√

1 − ydy

= −(8/3)π(1 − y)3/2

∣

∣

∣

1

0

= 8π/3

(In contrast with 1(e) and 1(a), rotation around the y-axis makes the solid in 2(e) different
from 2(a).)

2b                           2d                                         2f                                               2g                                   2h

(for 2a, set a = 1)                  (for 2c, set a = 1)                (for 2e, set a = 1)

a 0
0

b

a

∆

x =  a  − y x = y x = a +  a  − y x = y /a x  = a (1 − y /b )2 2 2 2 2 2

y

a2
a (a,a)a, a )2

2

f) x2 − 2ax + y = 0 =⇒ x = a ±
√

a2 − y. Using the method of washers:

∫ a2

0

π[(a +
√

a2 − y)2 − (a −
√

a2 − y)2]dy =

∫ a2

0

4πa
√

a2 − ydy

= −(8/3)πa(a2 − y)3/2

∣

∣

∣

1

0

= 8πa4/3

g) Using washers:

∫ a

0

π(a2 − (y2/a)2)dy = π(a2y − y5/5a2)
∣

∣

a

0
= 4πa3/5.

h)

∫ b

−b

πx2dy = 2π

∫ b

0

a2(1 − y2/b2)dy = 2π(a2y − a2y3/3b2)
∣

∣

b

0
= 4πa2b/3 (The answer in

2(h) is double the answer in 1(h), with a and b reversed. Can you see why?)

4B-3 Put the pyramid upside-down. By similar triangles, the base of the
smaller bottom pyramid has sides of length (z/h)L and (z/h)M .

The base of the big pyramid has area b = LM ; the base of the smaller
pyramid forms a cross-sectional slice, and has area

L M

h
z

(z/h)L · (z/h)M = (z/h)2LM = (z/h)2b

Therefore, the volume is

∫ h

0

(z/h)2bdz = bz3/3h2
∣

∣

h

0
= bh/3
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4B-4 The slice perpendicular to the xz-plane are right triangles
with base of length x and height z = 2x. Therefore the area of a
slice is x2. The volume is

1

1

x

x

2x

side view of
wedge along

y-axis

x

x

top view of
wedge along

z-axis

side view of
slice along

y-axis

z

∫ 1

−1

x2dy =

∫ 1

−1

(1 − y2)dy = 4/3

4B-5 One side can be described by y =
√

3x for 0 ≤ x ≤ a/2.

Therefore, the volume is

2

∫ a/2

0

πy2dx2

∫ a/2

0

π(
√

3x)2dx = πa3/4
a/2

y =  3x

4B-6 If the hypotenuse of an isoceles right triangle has length h,
then its area is h2/4. The endpoints of the slice in the xy-plane

are y = ±
√

a2 − x2, so h = 2
√

a2 − x2. In all the volume is

∫ a

−a

(h2/4)dx =

∫ a

−a

(a2 − x2)dx = 4a3/3

a

x a -x2    22

top view slice

a -x2    2

4B-7 Solving for x in y = (x − 1)2 and y = (x + 1)2 gives the values

x = 1 ±√
y and x = −1 ±√

y

The hard part is deciding which sign of the square root representing
the endpoints of the square.

-1 1

1
x = - +  y

(x-  y)2

1 x =  -  y1

Method 1: The point (0, 1) has to be on the two curves. Plug in y = 1 and x = 0 to see
that the square root must have the opposite sign from 1: x = 1 −√

y and x = −1 +
√

y.

Method 2: Look at the picture. x = 1 +
√

y is the wrong choice because it is the right
half of the parabola with vertex (1, 0). We want the left half: x = 1 − √

y. Similarly, we
want x = −1 +

√
y, the right half of the parabola with vertex (−1, 0). Hence, the side of

the square is the interval −1 +
√

y ≤ x ≤ 1 −√
y, whose length is 2(1 −√

y), and the

Volume =

∫ 1

0

(2(1 −√
y)2dy = 4

∫ 1

0

(1 − 2
√

y + y)dy = 2/3 .

4C. Volumes by shells

4C-1 a)

Shells:

∫ b+a

b−a

(2πx)(2y)dx =

∫ b+a

b−a

4πx
√

a2 − (x − b)2dx

b) (x − b)2 = a2 − y2 =⇒ x = b ±
√

a2 − y2

Washers:

∫ a

−a

π(x2
2 − x2

1)dy =

∫ a

−a

π((b +
√

a2 − y2)2 − (b −
√

a2 − y2)2)dy

= π

∫ a

−a

4b
√

a2 − y2dy
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b-a                                  b+a

a

-a

b-a                                  b+a

a

-a

Shells
Washers

y = -   a  - (x - b}2 2

2 2

x = b +   a  - y 2 2

x = b -   a  - y 2 2y =   a  - (x - b)

c)

∫ a

−a

√

a2 − y2dy = πa2/2, because it’s the area of a semicircle of radius a.

Thus (b) =⇒ Volume of torus = 2π2a2b

d) z = x − b, dz = dx

∫ b+a

b−a

4πx
√

a2 − (x − b)2dx =

∫ a

−a

4π(z + b)
√

a2 − z2dz =

∫ a

−a

4πb
√

a2 − z2dz

because the part of the integrand with the factor z is odd, and so it integrates to 0.

4C-2

∫ 1

0

2πxydx =

∫ 1

0

2πx3dx = π/2

y = x

4C−2  (shells)          4C−3a (shells)           4C−3b (discs)

y =  x x = y2

1 1

1

2

4C-3 Shells:

∫ 1

0

2πx(1 − y)dx =

∫ 1

0

2πx(1 −
√

x)dx = π/5

Disks:

∫ 1

0

πx2dy =

∫ 1

0

πy4dy = π/5

4C-4 a)

∫ 1

0

2πy(2x)dy = 4π

∫ 1

0

y
√

1 − ydy

b)

∫ a2

0

2πy(2x)dy = 4π

∫ a2

0

y
√

a2 − ydy

c)

∫ 1

0

2πy(1 − y)dy

d)

∫ a

0

2πy(a − y)dy
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e) x2 − 2x + y = 0 =⇒ x = 1 ±√
1 − y.

The interval 1 −
√

1 − y ≤ x ≤ 1 +
√

1 − y has length 2
√

1 − y

=⇒ V =

∫ 1

0

2πy(2
√

1 − y)dy = 4π

∫ 1

0

y
√

1 − ydy

f) x2 − 2ax + y = 0 =⇒ x = a ±
√

a2 − y.

The interval a −
√

a2 − y ≤ x ≤ a +
√

a2 − y has length 2
√

a2 − y

=⇒ V =

∫ a2

0

2πy(2
√

a2 − ydy = 4π

∫ a2

0

y
√

a2 − ydy

a 0
0

b

a

x =  a  - y x = y x = a +  a  - y x = y /a2 2 2

a2
a (a,a)

4b 4d 4f 4g 4h

(right)
x = a -  a  - y

x = a 1 - y /b 2 2

(a, a )2

x  =  -   a  - y  (left) 22

g)

∫ a

0

2πy(a − y2/a)dy

h)

∫ b

0

2πyxdy =

∫ b

0

2πy(a2(1 − y2/b2)dy

(Why is the lower limit of integration 0 rather than −b?)

4C-5 a)

∫ 1

0

2πx(1 − x2)dx c)

∫ 1

0

2πxydx =

∫ 1

0

2πx2dx

b)

∫ a

0

2πx(a2 − x2)dx d)

∫ a

0

2πxydx =

∫ a

0

2πx2dx

e)

∫ 2

0

2πxydx =

∫ 2

0

2πx(2x − x2)dx

∆-a         x                          a

(for 5a, set  a =   )1

a0

5b                              5d

y = a - x 2 2 y = x
for 5c, set a =  )1

5f

y = 2ax - x 
(for 5e, set a =  )

2

1

0 a

y =  ax

5g

y = b 1 - x /a

y = -b 1 - x /a

2 2

b

a

5h

b

2 2
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f)

∫ 2a

0

2πxydx =

∫ 2a

0

2πx(ax − x2)dx g)

∫ a

0

2πxydx =

∫ a

0

2πx
√

axdx

h)

∫ a

0

2πx(2y)dx =

∫ a

0

2πx(2b2(1 − x2/a2))dx

(Why did y get doubled this time?)

4C-6

∫ b

a

2πx(2y)dx =

∫ b

a

2πx(2
√

b2 − x2)dx

= −(4/3)π(b2 − x2)3/2

∣

∣

∣

b

a
= (4π/3)(b2 − a2)3/2

a b

base of removed
cylinder

y=- b - x

y= b - x2 2

2 2

Shells

4D. Average value

4D-1 Cross-sectional area at x is = πy2 = π · (x2)2 = πx4. Therefore,

average cross-sectional area =
1

2

∫ 2

0

πx4 dx =
πx5

10

∣

∣

∣

∣

2

0

=
16π

5
.

4D-2 Average =
1

a

∫ 2a

a

dx

x
=

1

a
lnx

∣

∣

∣

∣

2a

a

=
1

a
(ln 2a − ln a) =

1

a
ln

(

2a

a

)

=
ln 2

a
.

4D-3 Let s(t) be the distance function; then the velocity is v(t) = s′(t)

Average value of velocity =
1

b − a

∫ b

a

s′(t)dt =
s(b) − s(a)

b − a
by FT1

= average velocity over time interval [a,b]

4D-4 By symmetry, we can restrict P to the upper semicircle.

By the law of cosines, we have |PQ|2 = 12 + 12 − 2 cos θ. Thus

average of |PQ|2 =
1

π

∫ π

0

(2 − 2 cos θ)dθ =
1

π
[2θ − 2 sin θ]

π
0

= 2

(This is the value of |PQ|2 when θ = π/2, so the answer is reasonable.))

P

Q
θ

1

1

4D-5 By hypothesis, g(x) =
1

x

∫ x

0

f(t)dt To express f(x) in terms of g(x), multiply

thourgh by x and apply the Sec. Fund. Thm:
∫ x

0

f(t)dt = xg(x) ⇒ f(x) = g(x) + xg′(x) , by FT2..

4D-6 Average value of A(t) =
1

T

∫ T

0

A0e
rtdt =

1

T

A0

r
ert|T0 =

A0

rT
(erT − 1)

If rT is small, we can approximate: erT ≈ 1 + rT +
(rT )2

2
, so we get

A(t) ≈ A0

rT
(rT +

(rT )2

2
) = A0(1 +

rT

2
) .
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(If T ≈ 0, at the end of T years the interest added will be A0rT ; thus the average is
approximately what the account grows to in T/2 years, which seems reasonable.)

4D-7
1

b

∫ b

0

x2dx = b2/3

4D-8 The average on each side is the same as the average

over all four sides. Thus the average distance is

1

a

∫ a/2

−a/2

√

x2 + (a/2)2dx x

a/2
x + (a/2)2 2

Can’t be evaluated by a formula until Unit 5. The average of the square of the distance is

1

a

∫ a/2

−a/2

(x2 + (a/2)2)dx =
2

a

∫ a/2

0

(x2 + (a/2)2)dx = a2/3

4D-9
1

π/a

∫ π/a

0

sinax dx − 1

π
cos(ax)

∣

∣

∣

∣

π/a

0

= 2/π

4D’. Work

4D’-1 According to Hooke’s law, we have F = kx, where F is the force, x is the displace-
ment (i.e., the added length), and k is the Hooke’s law constant for the spring.

To find k, substitute into Hooke’s law: 2, 000 = k · (1/2) ⇒ k = 4000.
To find the work W , we have

W =

∫ 6

0

F dx =

∫ 6

0

4000xdx = 2000x2
]6

0
= 72, 000 inch-pounds = 6, 000 foot-pounds.

4D’-2 Let W (h) = weight of pail and paint at height h.
W (0) = 12, W (30) = 10 ⇒ W (h) = 12− 1

15
h, since the pulling and leakage both occur

at a constant rate.

work =

∫ 30

0

W (h) dh =

∫ 30

0

(12 − h

15
) dh = 12h − h2

30

]30

0

= 330 ft-lbs.

4D’-3 Think of the hose as divided into many equal little infinitesimal pieces, of length dh,
each of which must be hauled up to the top of the building.

The piece at distance h from the top end has weight 2 dh; to haul it up to the top requires
2h dh ft-lbs. Adding these up,

total work =

∫ 50

0

2h dh = h2
]50

0
= 2500ft-lbs.

4D’-4 If they are x units apart, the gravitational force between them is
g m1m2

x2
.

work =

∫ nd

d

g m1m2

x2
dx = −g m1m2

x

]nd

d

= −g m1m2

(

1

nd
− 1

d

)

=
g m1m2

d

(

n − 1

n

)

.
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The limit as n → ∞ is
g m1m2

d
.

4E. Parametric equations

4E-1 y − x = t2, y − 2x = −t. Therefore,

y − x = (y − 2x)2 =⇒ y2 − 4xy + 4x2 − y + x = 0 (parabola)

4E-2 x2 = t2 +2+1/t2 and y2 = t2−2+1/t2. Subtract, getting the hyperbola x2−y2 = 4

4E-3 (x − 1)2 + (y − 4)2 = sin2 θ + cos2 t = 1 (circle)

4E-4 1 + tan2 t = sec2 t =⇒ 1 + x2 = y2 (hyperbola)

4E-5 x = sin 2t = 2 sin t cos t = ±2
√

1 − y2y. This gives x2 = 4y2 − 4y4.

4E-6 y′ = 2x, so t = 2x and
x = t/2, y = t2/4

4E-7 Implicit differentiation gives 2x + 2yy′ = 0, so that y′ = −x/y. So the parameter is
t = −x/y. Substitute x = −ty in x2 + y2 = a2 to get

t2y2 + y2 = a2 =⇒ y2 = a2/(1 + t2)

Thus

y =
a√

1 + t2
, x =

−at√
1 + t2

For −∞ < t < ∞, this parametrization traverses the upper semicircle y > 0 (going clock-
wise). One can also get the lower semicircle (also clockwise) by taking the negative square
root when solving for y,

y =
−a√
1 + t2

, x =
at√

1 + t2

4E-8 The tip Q of the hour hand is given in terms of the angle θ by Q = (cos θ, sin θ)
(units are meters).

Next we express θ in terms of the time parameter t (hours). We have

θ =

{

π/2, t = 0

π/3, t = 1

}

θ decreases linearly with t

=⇒ θ − π

2
=

π
3
− π

2
· (t − 0)

1 − 0
. Thus we get θ = π

2
− π

6
t.

Q

θ
P

Finally, for the snail’s position P , we have

P = (t cos θ, t sin θ) , where t increases from 0 to 1. So,

x = t cos(
π

2
− π

6
t) = t sin

π

6
t, y = t sin(π

2
− π

6
t) = t cos π

6
t
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4F. Arclength

4F-1 a) ds =
√

1 + (y′)2dx =
√

26dx. Arclength =

∫ 1

0

√
26dx =

√
26.

b) ds =
√

1 + (y′)2dx =
√

1 + (9/4)xdx.

Arclength =

∫ 1

0

√

1 + (9/4)xdx = (8/27)(1 + 9x/4)3/2

∣

∣

∣

1

0

= (8/27)((13/4)3/2 − 1)

c) y′ = −x−1/3(1 − x2/3)1/2 = −
√

x−2/3 − 1. Therefore, ds = x−1/3dx, and

Arclength =

∫ 1

0

x−1/3dx = (3/2)x2/3

∣

∣

∣

1

0

= 3/2

d) y′ = x(2 + x2)1/2. Therefore, ds =
√

1 + 2x2 + x4dx = (1 + x2)dx and

Arclength =

∫ 2

1

(1 + x2)dx = x + x3/3
∣

∣

2

1
= 10/3

4F-2 y′ = (ex − e−x)/2, so the hint says 1 + (y′)2 = y2 and ds =
√

1 + (y′)2dx = ydx.
Thus,

Arclength = (1/2)

∫ b

0

(ex + e−x)dx = (1/2)(ex − e−x)
∣

∣

b

0
= (eb − e−b)/2

4F-3 y′ = 2x,
√

1 + (y′)2 =
√

1 + 4x2. Hence, arclength =

∫ b

0

√

1 + 4x2dx. 4F-4 ds =
√

(dx/dt)2 + (dy/dt)2dt =
√

4t2 + 9t4dt. Therefore,

Arclength =

∫ 2

0

√

4t2 + 9t4dt =

∫ 2

0

(4 + 9t2)1/2tdt

= (1/27)(4 + 9t2)3/2

∣

∣

∣

2

0

= (403/2 − 8)/27

4F-5 dx/dt = 1 − 1/t2, dy/dt = 1 + 1/t2. Thus

ds =
√

(dx/dt)2 + (dy/dt)2dt =
√

2 + 2/t4dt and

Arclength =

∫ 2

1

√

2 + 2/t4dt

4F-6 a) dx/dt = 1 − cos t, dy/dt = sin t.

ds/dt =
√

(dx/dt)2 + (dy/dt)2 =
√

2 − 2 cos t (speed of the point)

Forward motion (dx/dt) is largest for t an odd multiple of π (cos t = −1). Forward motion
is smallest for t an even multiple of π (cos t = 1). (continued →)
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Remark: The largest forward motion is when the point is at the top of the wheel and the
smallest is when the point is at the bottom (since y = 1 − cos t.)

b)

∫ 2π

0

√
2 − 2 cos tdt =

∫ 2π

0

2 sin(t/2)dt = −4 cos(t/2)|2π
0

= 8

4F-7

∫ 2π

0

√

a2 sin2 t + b2 cos2 tdt

4F-8 dx/dt = et(cos t − sin t), dy/dt = et(cos t + sin t).

ds =
√

e2t(cos t − sin t)2 + e2t(cos t + sin t)2dt = et
√

2 cos2 t + 2 sin2 tdt =
√

2etdt

Therefore, the arclength is

∫ 10

0

√
2etdt =

√
2(e10 − 1)

4G. Surface Area

4G-1 The curve y =
√

R2 − x2 for a ≤ x ≤ b is revolved around the x-axis.

Since we have y′ = −x/
√

R2 − x2, we get

a b

y=  R - x2 2

ds =
√

1 + (y′)2dx =
√

1 + x2/(R2 − x2)dx =
√

R2/(R2 − x2)dx = (R/y)dx

Therefore, the area element is

dA = 2πyds = 2πRdx

and the area is

∫ b

a

2πRdx = 2πR(b − a)

4G-2 Limits are 0 ≤ x ≤ 1/2. ds =
√

5dx, so

dA = 2πyds = 2π(1−2x)
√

5dx =⇒ A = 2π
√

5

∫ 1/2

0

(1−2x)dx =
√

5π/2
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4G-3 Limits are 0 ≤ y ≤ 1. x = (1 − y)/2, dx/dy = −1/2. Thus

ds =
√

1 + (dx/dy)2dy =
√

5/4dy;

dA = 2πyds = π(1 − y)(
√

5/2)dx =⇒ A = (
√

5π/2)
∫ 1

0
(1 − y)dy =

√
5π/4

4G−3

4G−2

1

1/2

y = 1 − 2x

x = (1 − y)/2

4G-4 A =

∫

2πyds =

∫ 4

0

2πx2
√

1 + 4x2dx

4G-5 x =
√

y, dx/dy = −1/2
√

y, and ds =
√

1 + 1/4ydy

A =

∫

2πxds =

∫ 2

0

2π
√

y
√

1 + 1/4ydy

=

∫ 2

0

2π
√

y + 1/4dy

= (4π/3)(y + 1/4)3/2

∣

∣

∣

2

0

= (4π/3)((9/4)3/2 − (1/4)3/2)

= 13π/3

4G-6 y = (a2/3 − x2/3)3/2 =⇒ y′ = −x−1/3(a2/3 − x2/3)1/2. Hence

ds =
√

1 + x−2/3(a2/3 − x2/3)dx = a1/3x−1/3dx

Therefore, (using symmetry on the interval −a ≤ x ≤ a) y = (a   - x   )2/3 2/3 3/2
-a                a

A =

∫

2πyds = 2

∫ a

0

2π(a2/3 − x2/3)3/2a1/3x−1/3dx

= (4π)(2/5)(−3/2)a1/3(a2/3 − x2/3)5/2

∣

∣

∣

a

0

= (12π/5)a2

4G-7 a) Top half: y =
√

a2 − (x − b)2, y′ = (b − x)/y. Hence,

ds =
√

1 + (b − x)2/y2dx =
√

(y2 + (b − x)2)/y2dx = (a/y)dx

Since we are only covering the top half we double the integral for area:

y =  a - (x-b)

b
a a

y = - a  - (x-b)

2 2

2 2

upper and lower surfaces are
symmetrical and equal

A =

∫

2πxds = 4πa

∫ b+a

b−a

xdx
√

a2 − (x − b)2
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b) We need to rotate two curves x2 = b +
√

a2 − y2

and x1 = b −
√

a2 − y2 around the y-axis. The value

dx2/dy = −(dx1/dy) = −y/
√

a2 − y2

So in both cases,

ds =
√

1 + y2/(a2 − y2)dy = (a/
√

a2 − y2)dy

The integral is

x = b +  a - y

x = b -  a - y

2 2

2 2

inner and outer surfaces are
not symmetrical and not equal

A =

∫

2πx2ds +

∫

2πx1ds =

∫ a

−a

2π(x1 + x2)
ady

√

a2 − y2

But x1 + x2 = 2b, so

A = 4πab

∫ a

−a

dy
√

a2 − y2

c) Substitute y = a sin θ, dy = a cos θdθ to get

A = 4πab

∫ π/2

−π/2

a cos θdθ

a cos θ
= 4πab

∫ π/2

−π/2

dθ = 4π2ab

4H. Polar coordinate graphs

4H-1 We give the polar coordinates in the form (r, θ):

a) (3, π/2) b) (2, π) c) (2, π/3) d) (2
√

2, 3π/4)

e) (
√

2,−π/4 or 7π/4) f) (2,−π/2 or 3π/2)

g) (2,−π/6 or 11π/6) h) (2
√

2,−3π/4 or 5π/4)

4H-2 a) (i) (x−a)2+y2 = a2 ⇒ x2−2ax+y2 = 0 ⇒ r2−2ar cos θ = 0 ⇒ r = 2a cos θ.

(ii) ∠OPQ = 90o, since it is an angle inscribed in a semicircle.
In the right triangle OPQ, |OP | = |OQ| cos θ, i.e., r = 2a cos θ.

b) (i) Analogous to 4H-2a(i); ans: r = 2a sin θ.
(ii) analogous to 4H-2a(ii); note that ∠OQP = θ, since both angles are complements

of ∠POQ.

c) (i) OQP is a right triangle, |OP | = r, and ∠POQ = α − θ.
The polar equation is r cos(α − θ) = a, or in expanded form,

r(cos α cos θ + sin α sin θ) = a, or finally,
x

A
+

y

B
= 1,

since from the right triangles OAQ and OBQ, we have cosα =
a

A
, sin α = cosBOQ =

a

B
.

d) Since |OQ| = sin θ, we have:
if P is above the x-axis, sin θ > 0, OP | = |OQ| − |QR|, or r = a − a sin θ;
if P is below the x-axis, sin θ < 0, OP | = |OQ| + |QR|, or r = a + a| sin θ| = a − a sin θ.
Thus the equation is r = a(1 − sin θ).



S. SOLUTIONS TO 18.01 EXERCISES

e) Briefly, when P = (0, 0), |PQ||PR| = a · a = a2, the constant.
Using the law of cosines,

|PR|2 = r2 + a2 − 2ar cos θ;
|PQ|2 = r2 + a2 − 2ar cos(π − θ) = r2 + a2 + 2ar cos θ

Therefore
|PQ|2|PR|2 = (r2 + a2)2 − (2ar cos θ)2 = (a2)2

which simplifies to
r2 = 2a2 cos 2θ.

4H-3 a) r = sec θ =⇒ r cos θ = 1 =⇒ x = 1 b) r = 2a cos θ =⇒ r2 = r · 2a cos θ =
2ax =⇒ x2 + y2 = 2ax

c) r = (a + b cos θ) (This figure is a cardiod for a = b, a limaçon with a loop for
0 < a < b, and a limaçon without a loop for a > b > 0.)

r2 = ar + br · cos θ = ar + bx =⇒ x2 + y2 = a
√

x2 + y2 + bx

r

θ
1

a 2a
r

θ
x

y

r r r

θ θθ

limacon  a<b cardioid (a=b) limacon a>b

ellipse 

parabola
hyperbolab=|c|

b>|c|

b<|c|

8a 8b 8c 8d

r = a/(b + c cos θ) =⇒ r(b + c cos θ) = a =⇒ rb + cx = a(d)

=⇒ rb = a − cx =⇒ r2b2 = a2 − 2acx + c2x2

=⇒ a2 − 2acx + (c2 − b2)x2 − b2y2 = 0

r = a sin(2θ) =⇒ r = 2a sin θ cos θ = 2axy/r2(e)

=⇒ r3 = 2axy =⇒ (x2 + y2)3/2 = 2axy

r = a cos 2 r = a sin 2 r  = a cos 2 r  = a sin 2 θθθθ 2 22 2

f) r = a cos(2θ) = a(2 cos2 θ − 1) = a(
2x2

x2 + y2
− 1) =⇒ (x2 + y2)3/2 = a(x2 − y2)

g) r2 = a2 sin(2θ) = 2a2 sin θ cos θ = 2a2 xy

r2
=⇒ r4 = 2a2xy =⇒ (x2 + y2)2 = 2axy

h) r2 = a2 cos(2θ) = a2(
2x2

x2 + y2
− 1) =⇒ (x2 + y2)2 = a2(x2 − y2)

i) r = eaθ =⇒ ln r = aθ =⇒ ln
√

x2 + y2 = a tan−1 y

x
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4I. Area and arclength in polar coordinates

4I-1
√

(dr/dθ)2 + r2dθ

a) sec2 θdθ

b) 2adθ

c)
√

a2 + b2 + 2ab cos θdθ

d)
a
√

b2 + c2 + 2bc cos θ

(b + c cos θ)2
dθ

e) a

√

4 cos2(2θ) + sin2(2θ)dθ

f) a

√

4 sin2(2θ) + cos2(2θ)dθ

g) Use implicit differentiation:

2rr′ = 2a2 cos(2θ) =⇒ r′ = a2 cos(2θ)/r =⇒ (r′)2 = a2 cos2(2θ)/ sin(2θ)

Hence, using a common denominator and cos2 + sin2 = 1,

ds =
√

a2 cos2(2θ)/ sin(2θ) + a2 sin(2θ)dθ =
a

√

sin(2θ)
dθ

h) This is similar to (g):

ds =
a

√

cos(2θ)
dθ

i)
√

1 + a2eaθdθ

4I-2 dA = (r2/2)dθ. The main difficulty is to decide on the endpoints of integration.
Endpoints are successive times when r = 0.

cos(3θ) = 0 =⇒ 3θ = π/2 + kπ =⇒ θ = π/6 + kπ/3, k an integer.

Thus, A =

∫ π/6

−π/6

(a2 cos2(3θ)/2)dθ = a2

∫ π/6

0

cos2(3θ)dθ.

(Stop here in Unit 4. Evaluated in Unit 5.)

θ

θ

= π/6

=−π/6
three-leaf rose
three empty sectors

4I-3 A =

∫

(r2/2)dθ =

∫ π

0

(e6θ/2)dθ = (1/12)e6θ
∣

∣

π

0
= (e6π −

1)/12 3πe 1

4I-4 Endpoints are successive time when r = 0.

sin(2θ) = 0 =⇒ 2θ = kπ, k an integer.

Thus, A =

∫

(r2/2)dθ =

∫ π/2

0

(a2/2) sin(2θ)dθ = −(a2/4) cos(2θ)
∣

∣

π/2

0
=

a2/2.
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4I-5 r = 2a cos θ, ds = 2adθ, −π/2 < θ < π/2. (The range was
chosen carefully so that r > 0.) Total length of the circle is 2πa. Since
the upper and lower semicircles are symmetric, it suffices to calculate
the average over the upper semicircle:

2a
r = 2a cos θ

1

πa

∫ π/2

0

2a cos θ(2a)dθ =
4a

π
sin θ

∣

∣

∣

∣

π/2

0

=
4a

π

4I-6 a) Since the upper and lower halves of the cardiod are symmetric,
it suffices to calculate the average distance to the x-axis just for a point
on the upper half. We have r = a(1 − cos θ), and the distance to the
x-axis is r sin θ, so

P

Q 0

r

1

π

∫ π

0

r sin θdθ =
1

π

∫ π

0

a(1 − cos θ) sin θdθ =
a

2π
(1 − cos θ)2

∣

∣

∣

π

0

=
2a

π

ds =
√

(dr/dθ)2 + r2dθ = a

√

(1 − cos θ)2 + sin2 θdθ(b)

= a
√

2 − 2 cos θdθ = 2a sin(θ/2)dθ, using the half angle formula.

arclength =

∫ 2π

0

2a sin(2θ)dθ = −4a cos(θ/2)|2π
0

= 8a

For the average, don’t use the half-angle version of the formula for ds, and use the interval
−π < θ < π, where sin θ is odd:

Average =
1

8a

∫ π

−π

|r sin θ|a
√

2 − 2 cos θdθ =
1

8a

∫ π

−π

| sin θ|
√

2a2(1 − cos θ)3/2dθ

=

√
2a

4

∫ π

0

(1 − cos θ)3/2 sin θdθ =

√
2a

10
(1 − cos θ)5/2

∣

∣

∣

∣

∣

π

0

=
4

5
a

4I-7 dx = −a sin θdθ. So the semicircle y > 0 has area

∫ a

−a

ydx =

∫ 0

π

a sin θ(−a sin θ)dθ = a2

∫ π

0

sin2 θdθ

But
∫ π

0

sin2 θdθ =
1

2

∫ π

0

(1 − cos(2θ)dθ = π/2

So the area is πa2/2 as it should be for a semicircle.

Arclength: ds2 = dx2 + dy2

=⇒ (ds)2 = (−a sin θdθ)2 + (a cos θdθ)2 = a2(sin2 dθ + cos2 dθ)(dθ)2

=⇒ ds = adθ (obvious from picture). -a a

ds

θ

dθ

∫

ds =

∫ 2π

0

adθ = 2πa
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4J. Other applications

4J-1 Divide the water in the hole into n equal circular discs of thickness ∆y.

Volume of each disc: π

(

1

2

)2

∆y

Energy to raise the disc of water at depth yi to surface:
π

4
kyi∆y.

Adding up the energies for the different discs, and passing to the limit,

E = lim
n→∞

n
∑

1

π

4
kyi∆y =

∫ 100

0

π

4
ky dy =

πk

4

y2

2

]100

0

=
πk104

8
.

4J-2 Divide the hour into n equal small time intervals ∆t.
At time ti, i = 1, . . . , n, there are x0e

−kti grams of material, producing approximately
rx0e

−kti∆t radiation units over the time interval [ti, ti + ∆t].
Adding and passing to the limit,

R = lim
n→∞

n
∑

1

r x0e
−kti∆t =

∫ 60

0

r x0e
−kt dt = r x0

e−kt

−k

]60

0

=
r x0

k

(

1 − e−60k
)

.

4J-3 Divide up the pool into n thin concentric cylindrical shells, of radius ri, i = 1, . . . , n,
and thickness ∆r.

The volume of the i-th shell is approximately 2π riD ∆r.

The amount of chemical in the i-th shell is approximately
k

1 + r2
i

2π riD ∆r.

Adding, and passing to the limit,

A = lim
n→∞

n
∑

1

k

1 + r2
i

2π riD ∆r =

∫ R

0

2πkD
r

1 + r2
dr

= πkD ln(1 + r2)

]R

0

= πkD ln(1 + R2) gms.

4J-4 Divide the time interval into n equal small intervals of length ∆t by the points ti,
i = 1, . . . , n.

The approximate number of heating units required to maintain the temperature at 75o

over the time interval [ti, ti + ∆t]: is
[

75 − 10

(

6 − cos
πti
12

)]

· k ∆t.

Adding over the time intervals and passing to the limit:

total heat = lim
n→∞

n
∑

1

[

75 − 10

(

6 − cos
πti
12

)]

· k ∆t

=

∫ 24

0

k

[

75 − 10

(

6 − cos
πt

12

)]

dt

=

∫ 24

0

k

(

15 + 10 cos
πt

12

)

dt = k

[

15t +
120

π
sin

πt

12

]24

0

= 360k.
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4J-5 Divide the month into n equal intervals of length ∆t by the points ti, i = 1, . . . , n.
Over the time interval [ti.ti + ∆t], the number of units produced is about (10 + ti)∆t.
The cost of holding these in inventory until the end of the month is c(30− ti)(10+ ti)∆t.
Adding and passing to the limit,

total cost = lim
n→∞

n
∑

1

c(30 − ti)(10 + ti)∆t

=

∫ 30

0

c(30 − t)(10 + t) dt = c

[

300t + 10t2 − t3

3

]30

0

= 9000c.

4J-6 Divide the water in the tank into thin horizontal slices of width dy.

If the slice is at height y above the center of the tank, its radius is
√

r2 − y2.
This formula for the radius of the slice is correct even if y < 0 – i.e., the slice is below the
center of the tank – as long as −r < y < r, so that there really is a slice at that height.

Volume of water in the slice = π(r2 − y2) dy
Weight of water in the slice = πw(r2 − y2) dy
Work to lift this slice from the ground to the height h + y = πw(r2 − y2) dy (h + y).

Total work =

∫ r

−r

πw(r2 − y2)(h + y) dy

= πw

∫ r

−r

(r2h + r2y − hy2 − y3)

= πw

[

r2hy +
r2y2

2
− hy3

3
− y4

4

]r

−r

.

In this last line, the even powers of y have the same value at −r and r, so contribute 0 when
it is evaluated; we get therefore

= πwh

[

r2y − y3

3

]r

−r

= 2πwh

(

r3 − r3

3

)

=
4

3
πwhr3.


