
SOLUTIONS TO 18.01 EXERCISES

Unit 1. Differentiation

1A. Graphing

1A-1,2 a) y = (x − 1)2 − 2

b) y = 3(x2 + 2x) + 2 = 3(x + 1)2 − 1

-2

1

-1

2

-2

1

1

2

1a 1b 2a 2b

1A-3 a) f(−x) =
(−x)3 − 3x

1 − (−x)4
=

−x3 − 3x

1 − x4
= −f(x), so it is odd.

b) (sin(−x))2 = (sin x)2, so it is even.

c)
odd

even
, so it is odd

d) (1 − x)4 6= ±(1 + x)4: neither.

e) J0((−x)2) = J0(x
2), so it is even.

1A-4 a) p(x) = pe(x) + po(x), where pe(x) is the sum of the even powers and po(x) is the
sum of the odd powers

b) f(x) =
f(x) + f(−x)

2
+

f(x) − f(−x)

2

F (x) =
f(x) + f(−x)

2
is even and G(x) =

f(x) − f(−x)

2
is odd because

F (−x) =
f(−x) + f(−(−x))

2
= F (x); G(−x) =

f(x) − f(−x)

2
= −G(−x).

c) Use part b:

1

x + a
+

1

−x + a
=

2a

(x + a)(−x + a)
=

2a

a2 − x2
even

1

x + a
− 1

−x + a
=

−2x

(x + a)(−x + a)
=

−2x

a2 − x2
odd

=⇒ 1

x + a
=

a

a2 − x2
− x

a2 − x2
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S. 18.01 SOLUTIONS TO EXERCISES

1A-5 a) y =
x − 1

2x + 3
. Crossmultiply and solve for x, getting x =

3y + 1

1 − 2y
, so the inverse

function is
3x + 1

1 − 2x
.

b) y = x2 + 2x = (x + 1)2 − 1

(Restrict domain to x ≤ −1, so when it’s flipped about the diagonal y = x, you’ll still
get the graph of a function.) Solving for x, we get x =

√
y + 1 − 1, so the inverse function

is y =
√

x + 1 − 1 .

5b

f(x)
g(x)

5a

g(x)

f(x)

1A-6 a) A =
√

1 + 3 = 2, tan c =

√
3

1
, c = π

3 . So sinx +
√

3 cosx = 2 sin(x + π
3 ) .

b)
√

2 sin(x − π

4
)

1A-7 a) 3 sin(2x − π) = 3 sin 2(x − π

2
), amplitude 3, period π, phase angle π/2.

b) −4 cos(x +
π

2
) = 4 sinx amplitude 4, period 2π, phase angle 0.

7a 7b

-3 -4

43

π π2 2π π

1A-8

f(x) odd =⇒ f(0) = −f(0) =⇒ f(0) = 0.

So f(c) = f(2c) = · · · = 0, also (by periodicity, where c is the period).

1A-9

-7 -5 -1 1 3 5-3

-1

-8          -4 4            8            12

-6

3

9ab    period = 4 9c

2

c) The graph is made up of segments joining (0,−6) to (4, 3) to (8,−6). It repeats in
a zigzag with period 8. * This can be derived using:

x/2 − 1 = −1 =⇒ x = 0 and g(0) = 3f(−1) − 3 = −6

x/2 − 1 = 1 =⇒ x = 4 and g(4) = 3f(1) − 3 = 3

x/2 − 1 = 3 =⇒ x = 8 and g(8) = 3f(3) − 3 = −6



1. DIFFERENTIATION

1B. Velocity and rates of change

1B-1 a) h = height of tube = 400 − 16t2.

average speed
h(2) − h(0)

2
=

(400 − 16 · 22) − 400

2
= −32ft/sec

(The minus sign means the test tube is going down. You can also do this whole problem
using the function s(t) = 16t2, representing the distance down measured from the top. Then
all the speeds are positive instead of negative.)

b) Solve h(t) = 0 (or s(t) = 400) to find landing time t = 5. Hence the average speed
for the last two seconds is

h(5) − h(3)

2
=

0 − (400 − 16 · 32)

2
= −128ft/sec

c)

h(t) − h(5)

t − 5
=

400 − 16t2 − 0

t − 5
=

16(5 − t)(5 + t)

t − 5
= −16(5 + t) → −160ft/sec as t → 5

1B-2 A tennis ball bounces so that its initial speed straight upwards is b feet per second.
Its height s in feet at time t seconds is

s = bt − 16t2

a)

s(t + h) − s(t)

h
=

b(t + h) − 16(t + h)2 − (bt − 16t2)

h

=
bt + bh − 16t2 − 32th − 16h2 − bt + 16t2

h

=
bh − 32th− 16h2

h
= b − 32t− 16h → b − 32t as h → 0

Therefore, v = b − 32t.

b) The ball reaches its maximum height exactly when the ball has finished going up.
This is time at which v(t) = 0, namely, t = b/32.

c) The maximum height is s(b/32) = b2/64.

d) The graph of v is a straight line with slope
−32. The graph of s is a parabola with maximum
at place where v = 0 at t = b/32 and landing time
at t = b/16.

v
b

t

s

b/32

b/32 tb/16
graph of velocity                    graph of position
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e) If the initial velocity on the first bounce was b1 = b, and the velocity of the second

bounce is b2, then b2
2/64 = (1/2)b2

1/64. Therefore, b2 = b1/
√

2. The second bounce is at
b1/16 + b2/16. (continued →)

f) If the ball continues to bounce then the landing times form a geometric series

b1/16 + b2/16 + b3/16 + · · · = b/16 + b/16
√

2 + b/16(
√

2)2 + · · ·
= (b/16)(1 + (1/

√
2) + (1/

√
2)2 + · · · )

=
b/16

1 − (1/
√

2)

Put another way, the ball stops bouncing after 1/(1 − (1/
√

2)) ≈ 3.4 times the length of
time the first bounce.

1C. Slope and derivative.

1C-1 a)

π(r + h)2 − πr2

h
=

π(r2 + 2rh + h2) − πr2

h
=

π(2rh + h2)

h
= π(2r + h)

→ 2πr as h → 0

b)

(4π/3)(r + h)3 − (4π/3)r3

h
=

(4π/3)(r3 + 3r2h + 3rh2 + h3) − (4π/3)r3

h

=
(4π/3)(3r2h + 3rh2 + h3)

h

= (4π/3)(3r2 + 3rh + h2)

→ 4πr2 as h → 0

1C-2
f(x) − f(a)

x − a
=

(x − a)g(x) − 0

x − a
= g(x) → g(a) as x → a.

1C-3 a)

1

h

[

1

2(x + h) + 1
− 1

2x + 1

]

=
1

h

[

2x + 1 − (2(x + h) + 1)

(2(x + h) + 1)(2x + 1)

]

=
1

h

[ −2h

(2(x + h) + 1)(2x + 1)

]

=
−2

(2(x + h) + 1)(2x + 1)

−→ −2

(2x + 1)2
as h → 0



1. DIFFERENTIATION

b)

2(x + h)2 + 5(x + h) + 4 − (2x2 + 5x + 4)

h
=

2x2 + 4xh + 2h2 + 5x + 5h − 2x2 − 5x

h

=
4xh + 2h2 + 5h

h
= 4x + 2h + 5

−→ 4x + 5 as h → 0

c)

1

h

[

1

(x + h)2 + 1
− 1

x2 + 1

]

=
1

h

[

(x2 + 1) − ((x + h)2 + 1)

((x + h)2 + 1)(x2 + 1)

]

=
1

h

[

x2 + 1 − x2 − 2xh − h2 − 1

((x + h)2 + 1)(x2 + 1)

]

=
1

h

[ −2xh − h2

((x + h)2 + 1)(x2 + 1)

]

=
−2x − h

((x + h)2 + 1)(x2 + 1)

−→ −2x

(x2 + 1)2
as h → 0

d) Common denominator:

1

h

[

1√
x + h

− 1√
x

]

=
1

h

[√
x −

√
x + h√

x + h
√

x

]

Now simplify the numerator by multiplying numerator and denominator by
√

x +
√

x + h,
and using (a − b)(a + b) = a2 − b2 :

1

h

[

(
√

x)2 − (
√

x + h)2√
x + h

√
x(
√

x +
√

x + h)

]

=
1

h

[

x − (x + h)√
x + h

√
x(
√

x +
√

x + h)

]

=
1

h

[ −h√
x + h

√
x(
√

x +
√

x + h)

]

=

[ −1√
x + h

√
x(
√

x +
√

x + h)

]

−→ −1

2(
√

x)3
= −1

2
x−3/2 as h → 0

e) For part (a), −2/(2x+ 1)2 < 0, so there are no points where the slope is 1 or 0. For
slope −1,

−2/(2x + 1)2 = −1 =⇒ (2x + 1)2 = 2 =⇒ 2x + 1 = ±
√

2 =⇒ x = −1/2±
√

2/2

For part (b), the slope is 0 at x = −5/4, 1 at x = −1 and −1 at x = −3/2.

1C-4 Using Problem 3,
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a) f ′(1) = −2/9 and f(1) = 1/3, so y = −(2/9)(x − 1) + 1/3 = (−2x + 5)/9

b) f(a) = 2a2 + 5a + 4 and f ′(a) = 4a + 5, so

y = (4a + 5)(x − a) + 2a2 + 5a + 4 = (4a + 5)x − 2a2 + 4

c) f(0) = 1 and f ′(0) = 0, so y = 0(x − 0) + 1, or y = 1.

d) f(a) = 1/
√

a and f ′(a) = −(1/2)a−3/2, so

y = −(1/2)a3/2(x − a) + 1/
√

a = −a−3/2x + (3/2)a−1/2

1C-5 Method 1. y′(x) = 2(x − 1), so the tangent line through (a, 1 + (a − 1)2) is

y = 2(a − 1)(x − a) + 1 + (a − 1)2

In order to see if the origin is on this line, plug in x = 0 and y = 0, to get the following
equation for a.

0 = 2(a − 1)(−a) + 1 + (a − 1)2 = −2a2 + 2a + 1 + a2 − 2a + 1 = −a2 + 2

Therefore a = ±
√

2 and the two tangent lines through the origin are

y = 2(
√

2 − 1)x and y = −2(
√

2 + 1)x

(Because these are lines throught the origin, the constant terms must cancel: this is a good
check of your algebra!)

Method 2. Seek tangent lines of the form y = mx. Suppose that y = mx meets
y = 1 + (x − 1)2, at x = a, then ma = 1 + (a − 1)2. In addition we want the slope
y′(a) = 2(a − 1) to be equal to m, so m = 2(a − 1). Substituting for m we find

2(a − 1)a = 1 + (a − 1)2

This is the same equation as in method 1: a2 − 2 = 0, so a = ±
√

2 and m = 2(±
√

2 − 1),
and the two tangent lines through the origin are as above,

y = 2(
√

2 − 1)x and y = −2(
√

2 + 1)x

1C-6

-2

2
-2

2
4

1

-2

period = 6(even) (odd)

5a 5b 5c 5d 5e



1. DIFFERENTIATION

1D. Limits and continuity

1D-1 Calculate the following limits if they exist. If they do not exist, then indicate whether
they are +∞, −∞ or undefined.

a) −4

b) 8/3

c) undefined (both ±∞ are possible)

d) Note that 2 − x is negative when x > 2, so the limit is −∞
e) Note that 2 − x is positive when x < 2, so the limit is +∞ (can also be written ∞)

f)
4x2

x − 2
=

4x

1 − (2/x)
→ ∞

1
= ∞ as x → ∞

g)
4x2

x − 2
− 4x =

4x2 − 4x(x − 2)

x − 2
=

8x

x − 2
=

8

1 − (2/x)
→ 8 as x → ∞

i)
x2 + 2x + 3

3x2 − 2x + 4
=

1 + (2/x) + (3/x2)

3 − (2/x) + 4/x2)
→ 1

3
as x → ∞

j)
x − 2

x2 − 4
=

x − 2

(x − 2)(x + 2)
=

1

x + 2
→ 1

4
as x → 2

1D-2 a) lim
x→0+

√
x = 0 b) lim

x→1+

1

x − 1
= ∞ lim

x→1−

1

x − 1
= −∞

c) lim
x→1

(x − 1)−4 = ∞ (left and right hand limits are same)

d) lim
x→0

| sin x| = 0 (left and right hand limits are same)

e) lim
x→0+

|x|
x

= 1 lim
x→0−

|x|
x

= −1

1D-3 a) x = 2 removable x = −2 infinite b) x = 0,±π,±2π, ... infinite

c) x = 0 removable d) x = 0 removable e) x = 0 jump f) x = 0 removable

1D-4

4a 4b

2

(−1,1)
(0,.5)

1D-5 a) for continuity, want ax + b = 1 when x = 1. Ans.: all a, b such that a + b = 1

b)
dy

dx
=

d(x2)

dx
= 2x = 2 when x = 1 . We have also

d(ax + b)

dx
= a. Therefore, to

make f ′(x) continuous, we want a = 2.

Combining this with the condition a + b=1 from part (a), we get finally b = −1, a = 2.



S. 18.01 SOLUTIONS TO EXERCISES

1D-6 a) f(0) = 02 + 4 · 0 + 1 = 1. Match the function values:

f(0−) = lim
x→0

ax + b = b, so b = 1 by continuity.

Next match the slopes:
f ′(0+) = lim

x→0
2x + 4 = 4

and f ′(0−) = a. Therefore, a = 4, since f ′(0) exists.

b)
f(1) = 12 + 4 · 1 + 1 = 6 and f(1−) = lim

x→1
ax + b = a + b

Therefore continuity implies a + b = 6. The slope from the right is

f ′(1+) = lim
x→1

2x + 4 = 6

Therefore, this must equal the slope from the left, which is a. Thus, a = 6 and b = 0.

1D-7

f(1) = c12 + 4 · 1 + 1 = c + 5 and f(1−) = lim
x→1

ax + b = a + b

Therefore, by continuity, c + 5 = a + b. Next, match the slopes from left and right:

f ′(1+) = lim
x→1

2cx + 4 = 2c + 4 and f ′(1−) = lim
x→1

a = a

Therefore,
a = 2c + 4 and b = −c + 1.

1D-8

a)
f(0) = sin(2 · 0) = 0 and f(0+) = lim

x→0
ax + b = b

Therefore, continuity implies b = 0. The slope from each side is

f ′(0−) = lim
x→0

2 cos(2x) = 2 and f ′(0+) = lim
x→0

a = a

Therefore, we need a 6= 2 in order that f not be differentiable.

b)
f(0) = cos(2 · 0) = 1 and f(0+) = lim

x→0
ax + b = b

Therefore, continuity implies b = 1. The slope from each side is

f ′(0−) = lim
x→0

−2 sin(2x) = 0 and f ′(0+) = lim
x→0

a = a

Therefore, we need a 6= 0 in order that f not be differentiable.

1D-9 There cannot be any such values because every differentiable function is continuous.



1. DIFFERENTIATION

1E: Differentiation formulas: polynomials, products, quotients

1E-1 Find the derivative of the following polynomials

a) 10x9 + 15x4 + 6x2

b) 0 (e2 + 1 ≈ 8.4 is a constant and the derivative of a constant is zero.)

c) 1/2

d) By the product rule: (3x2 +1)(x5 +x2)+(x3 +x)(5x4 +2x) = 8x7 +6x5 +5x4 +3x2.
Alternatively, multiply out the polynomial first to get x8+x6+x5+x3 and then differentiate.

1E-2 Find the antiderivative of the following polynomials

a) ax2/2 + bx + c, where a and b are the given constants and c is a third constant.

b) x7/7 + (5/6)x6 + x4 + c

c) The only way to get at this is to multiply it out: x6 + 2x3 + 1. Now you can take
the antiderivative of each separate term to get

x7

7
+

x4

2
+ x + c

Warning: The answer is not (1/3)(x3 + 1)3. (The derivative does not match if you apply
the chain rule, the rule to be treated below in E4.)

1E-3 y′ = 3x2 + 2x − 1 = 0 =⇒ (3x − 1)(x + 1) = 0. Hence x = 1/3 or x = −1 and the
points are (1/3, 49/27) and (−1, 3)

1E-4 a) f(0) = 4, and f(0−) = lim
x→0

5x5 + 3x4 + 7x2 + 8x + 4 = 4. Therefore the function

is continuous for all values of the parameters.

f ′(0+) = lim
x→0

2ax + b = b and f ′(0−) = lim
x→0

25x4 + 12x3 + 14x + 8 = 8

Therefore, b = 8 and a can have any value.

b) f(1) = a + b + 4 and f(1+) = 5 + 3 + 7 + 8 + 4 = 27. So by continuity,

a + b = 23

f ′(1−) = lim
x→1

2ax + b = 2a + b; f ′(1+) = lim
x→1

25x4 + 12x3 + 14x + 8 = 59.

Therefore, differentiability implies
2a + b = 59

Subtracting the first equation, a = 59 − 23 = 36 and hence b = −13.

1E-5 a)
1

(1 + x)2
b)

1 − 2ax − x2

(x2 + 1)2
c)

−x2 − 4x − 1

(x2 − 1)2

d) 3x2 − 1/x2
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1F. Chain rule, implicit differentiation

1F-1 a) Let u = (x2 + 2)

d

dx
u2 =

du

dx

d

du
u2 = (2x)(2u) = 4x(x2 + 2) = 4x3 + 8x

Alternatively,
d

dx
(x2 + 2)2 =

d

dx
(x4 + 4x2 + 4) = 4x3 + 8x

b) Let u = (x2 + 2); then
d

dx
u100 =

du

dx

d

du
u100 = (2x)(100u99) = (200x)(x2 + 2)99.

1F-2 Product rule and chain rule:

10x9(x2 + 1)10 + x10[10(x2 + 1)9(2x)] = 10(3x2 + 1)x9(x2 + 1)9

1F-3 y = x1/n =⇒ yn = x =⇒ nyn−1y′ = 1. Therefore,

y′ =
1

nyn−1
=

1

n
y1−n =

1

n
x

1

n
−1

1F-4 (1/3)x−2/3 + (1/3)y−2/3y′ = 0 implies

y′ = −x−2/3y2/3

Put u = 1 − x1/3. Then y = u3, and the chain rule implies

dy

dx
= 3u2 du

dx
= 3(1 − x1/3)2(−(1/3)x−2/3) = −x−2/3(1 − x1/3)2

The chain rule answer is the same as the one using implicit differentiation because

y = (1 − x1/3)3 =⇒ y2/3 = (1 − x1/3)2

1F-5 Implicit differentiation gives cosx + y′ cos y = 0. Horizontal slope means y′ = 0,
so that cosx = 0. These are the points x = π/2 + kπ for every integer k. Recall that
sin(π/2 + kπ) = (−1)k, i.e., 1 if k is even and −1 if k is odd. Thus at x = π/2 + kπ,
±1 + sin y = 1/2, or sin y = ∓1 + 1/2. But sin y = 3/2 has no solution, so the only
solutions are when k is even and in that case sin y = −1 + 1/2, so that y = −π/6 + 2nπ or
y = 7π/6 + 2nπ. In all there are two grids of points at the vertices of squares of side 2π,
namely the points

(π/2 + 2kπ,−π/6 + 2nπ) and (π/2 + 2kπ, 7π/6 + 2nπ); k, n any integers.

1F-6 Following the hint, let z = −x. If f is even, then f(x) = f(z) Differentiating and
using the chain rule:

f ′(x) = f ′(z)(dz/dx) = −f ′(z) because dz/dx = −1

But this means that f ′ is odd. Similarly, if g is odd, then g(x = −g(z). Differentiating and
using the chain rule:

g′(x) = −g′(z)(dz/dx) = g′(z) because dz/dx = −1
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1F-7 a)
dD

dx
=

1

2
((x − a)2 + y0

2)−1/2(2(x − a)) =
x − a

√

(x − a)2 + y0
2

b)
dm

dv
= m0 ·

−1

2
(1 − v2/c2)−3/2 · −2v

c2
=

m0v

c2(1 − v2/c2)3/2

c)
dF

dr
= mg · (−3

2
)(1 + r2)−5/2 · 2r =

−3mgr

(1 + r2)5/2

d)
dQ

dt
= at · −6bt

(1 + bt2)4
+

a

(1 + bt2)3
=

a(1 − 5bt2)

(1 + bt2)4

1F-8 a) V =
1

3
πr2h =⇒ 0 =

1

3
π(2rr′h + r2) =⇒ r′ =

−r2

2rh
=

−r

2h

b) PV c = nRT =⇒ P ′V c + P · cV c−1 = 0 =⇒ P ′ = −cPV c−1

V c
= −cP

V

c) c2 = a2 + b2 − 2ab cos θ implies

0 = 2aa′ + 2b − 2(cos θ(a′b + a)) =⇒ a′ =
−2b + 2 cos θ · a
2a − 2 cos θ · b =

a cos θ − b

a − b cos θ

1G. Higher derivatives

1G-1 a) 6 − x−3/2 b)
−10

(x + 5)3
c)

−10

(x + 5)3
d) 0

1G-2 If y′′′ = 0, then y′′ = c0, a constant. Hence y′ = c0x + c1, where c1 is some other
constant. Next, y = c0x

2/2 + c1x + c2, where c2 is yet another constant. Thus, y must be
a quadratic polynomial, and any quadratic polynomial will have the property that its third
derivative is identically zero.

1G-3
x2

a2
+

y2

b2
= 1 =⇒ 2x

a2
+

2yy′

b2
= 0 =⇒ y′ = −(b2/a2)(x/y)

Thus,

y′′ = −
(

b2

a2

) (

y − xy′

y2

)

= −
(

b2

a2

) (

y + x(b2/a2)(x/y)

y2

)

= −
(

b4

y3a2

)

(y2/b2 + x2/a2) = − b4

a2y3

1G-4 y = (x + 1)−1, so y(1) = −(x + 1)−2, y(2) = (−1)(−2)(x + 1)−3, and

y(3) = (−1)(−2)(−3)(x + 1)−4.

The pattern is

y(n) = (−1)n(n!)(x + 1)−n−1
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1G-5 a) y′ = u′v + uv′ =⇒ y′′ = u′′v + 2u′v′ + uv′′

b) Formulas above do coincide with Leibniz’s formula for n = 1 and n = 2. To calculate
y(p+q) where y = xp(1 + x)q , use u = xp and v = (1 + x)q . The only term in the Leibniz

formula that is not 0 is

(

n

k

)

u(p)v(q), since in all other terms either one factor or the other

is 0. If u = xp, u(p) = p!, so

y(p+q) =

(

n

p

)

p!q! =
n!

p!q!
· p!q! = n!

1H. Exponentials and Logarithms: Algebra

1H-1 a) To see when y = y0/2, we must solve the equation
y0

2
= y0e

−kt, or 1
2 = e−kt.

Take ln of both sides: − ln 2 = −kt, from which t =
ln 2

k
.

b) y1 = y0e
kt1 by assumption, λ =

− ln 2

k
y0e

k(t1+λ) = y0e
kt1 · ekλ = y1 · e− ln 2 = y1 ·

1

2

1H-2 pH = − log10[H
+]; by assumption, [H+]dil = 1

2 [H+]orig. Take − log10 of both sides
(note that log 2 ≈ .3):

− log [H+]dil = log 2 − log [H+]orig =⇒ pHdil = pHorig + log2.

1H-3 a) ln(y + 1) + ln(y − 1) = 2x + lnx; exponentiating both sides and solving for y:

(y + 1) · (y − 1) = e2x · x =⇒ y2 − 1 = xe2x =⇒ y =
√

xe2x + 1, since y > 0.

b) log(y+1)−log(y−1) = −x2; exponentiating,
y + 1

y − 1
= 10−x2

. Solve for y; to simplify

the algebra, let A = 10−x2

. Crossmultiplying, y +1 = Ay−A =⇒ y =
A + 1

A − 1
=

10−x2

+ 1

10−x2 − 1

c) 2 ln y − ln(y + 1) = x; exponentiating both sides and solving for y:

y2

y + 1
= ex =⇒ y2 − exy − ex = 0 =⇒ y =

ex
√

e2x + 4ex

2
, since y − 1 > 0.

1H-4
ln a

ln b
= c ⇒ ln a = c ln b ⇒ a = ec ln b = eln bc

= bc. Similarly,
log a

log b
= c ⇒ a = bc.

1H-5 a) Put u = ex (multiply top and bottom by ex first):
u2 + 1

u2 − 1
= y; this gives

u2 =
y + 1

y − 1
= e2x; taking ln: 2x = ln(

y + 1

y − 1
), x =

1

2
ln(

y + 1

y − 1
)

b) ex+e−x = y; putting u = ex gives u+
1

u
= y ; solving for u gives u2−yu+1 = 0

so that u =
y ±

√

y2 − 4

2
= ex; taking ln: x = ln(

y ±
√

y2 − 4

2
)

1H-6 A = log e · ln 10 = ln(10log e) = ln(e) = 1 ; similarly, logb a · loga b = 1
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1H-7 a) If I1 is the intensity of the jet and I2 is the intensity of the conversation, then

log10(I1/I2) = log10

(

I1/I0

I2/I0

)

= log10(I1/I0) − log10(I2/I0) = 13 − 6 = 7

Therefore, I1/I2 = 107.

b) I = C/r2 and I = I1 when r = 50 implies

I1 = C/502 =⇒ C = I1502 =⇒ I = I1502/r2

This shows that when r = 100, we have I = I1502/1002 = I1/4 . It follows that

10 log10(I/I0) = 10 log10(I1/4I0) = 10 log10(I1/I0) − 10 log10 4 ≈ 130 − 6.0 ≈ 124

The sound at 100 meters is 124 decibels.

The sound at 1 km has 1/100 the intensity of the sound at 100 meters, because 100m/1km =
1/10.

10 log10(1/100) = 10(−2) = −20

so the decibel level is 124 − 20 = 104.

1I. Exponentials and Logarithms: Calculus

1I-1 a) (x + 1)ex b) 4xe2x c) (−2x)e−x2

d) lnx e) 2/x f) 2(lnx)/x g) 4xe2x2

h) (xx)′ =
(

ex ln x
)′

= (x lnx)′ex ln x = (ln x + 1)ex ln x = (1 + lnx)xx

i) (ex − e−x)/2 j) (ex + e−x)/2 k) −1/x l) −1/x(lnx)2 m) −2ex/(1 + ex)2

1I-2
1

(even)
1I-3 a) As n → ∞, h = 1/n → 0.

n ln(1 +
1

n
) =

ln(1 + h)

h
=

ln(1 + h) − ln(1)

h
−→
h→0

d

dx
ln(1 + x)

∣

∣

∣

∣

x=0

= 1

Therefore,

lim
n→∞

n ln(1 +
1

n
) = 1

b) Take the logarithm of both sides. We need to show

lim
n→∞

ln(1 +
1

n
)n = ln e = 1

But

ln(1 +
1

n
)n = n ln(1 +

1

n
)

so the limit is the same as the one in part (a).
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1I-4 a)
(

1 +
1

n

)3n

=

((

1 +
1

n

)n)3

−→ e3 as n → ∞,

b) Put m = n/2. Then

(

1 +
2

n

)5n

=

(

1 +
1

m

)10m

=

((

1 +
1

m

)m)10

−→ e10 as m → ∞

c) Put m = 2n. Then

(

1 +
1

2n

)5n

=

(

1 +
1

m

)5m/2

=

((

1 +
1

m

)m)5/2

−→ e5/2 as m → ∞

1J. Trigonometric functions

1J-1 a) 10x cos(5x2) b) 6 sin(3x) cos(3x) c) −2 sin(2x)/ cos(2x) = −2 tan(2x)

d) −2 sinx/(2 cosx) = − tan x. (Why did the factor 2 disappear? Because ln(2 cosx) =
ln 2 + ln(cosx), and the derivative of the constant ln 2 is zero.)

e)
x cos x − sinx

x2
f) −(1 + y′) sin(x + y) g) − sin(x + y) h) 2 sinx cosxesin2 x

i)
(x2 sin x)′

x2 sin x
=

2x sinx + x2 cosx

x2 sin x
=

2

x
+ cotx. Alternatively,

ln(x2 sin x) = ln(x2) + ln(sinx) = 2 lnx + ln sinx

Differentiating gives
2

x
+

cosx

sinx
=

2

x
+ cotx

j) 2e2x sin(10x) + 10e2x cos(10x) k) 6 tan(3x) sec2(3x) = 6 sinx/ cos3 x

l) −x(1 − x2)−1/2 sec(
√

1 − x2) tan(
√

1 − x2)

m) Using the chain rule repeatedly and the trigonometric double angle formulas,

(cos2 x − sin2 x)′ = −2 cosx sin x − 2 sinx cosx = −4 cosx sin x;

(2 cos2 x)′ = −4 cosx sin x;

(cos(2x))′ = −2 sin(2x) = −2(2 sinx cosx).

The three functions have the same derivative, so they differ by constants. And indeed,

cos(2x) = cos2 x − sin2 x = 2 cos2 x − 1, (using sin2 x = 1 − cos2 x).

n)

5(sec(5x) tan(5x)) tan(5x) + 5(sec(5x)(sec2(5x)) = 5 sec(5x)(sec2(5x) + tan2(5x))

Other forms: 5 sec(5x)(2 sec2(5x) − 1); 10 sec3(5x) − 5 sec(5x)
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o) 0 because sec2(3x) − tan2(3x) = 1, a constant — or carry it out for practice.

p) Successive use of the chain rule:

(sin (
√

x2 + 1))′ = cos (
√

x2 + 1) · 1

2
(x2 + 1)−1/2 · 2x

=
x√

x2 + 1
cos (

√

x2 + 1)

q) Chain rule several times in succession:

(cos2
√

1 − x2)′ = 2 cos
√

1 − x2 · (− sin
√

1 − x2) · −x√
1 − x2

=
x√

1 − x2
sin(2

√

1 − x2)

r) Chain rule again:

(

tan2(
x

x + 1
)

)

= 2 tan(
x

x + 1
) · sec2(

x

x + 1
) · x + 1 − x

(x + 1)2

=
2

(x + 1)2
tan(

x

x + 1
) sec2(

x

x + 1
)

1J-2 Because cos(π/2) = 0,

lim
x→π/2

cosx

x − π/2
= lim

x→π/2

cosx − cos(π/2)

x − π/2
=

d

dx
cosx|x=π/2 = − sin x|x=π/2 = −1

1J-3 a) (sin(kx))′ = k cos(kx). Hence

(sin(kx))′′ = (k cos(kx))′ = −k2 sin(kx).

Similarly, differentiating cosine twice switches from sine and then back to cosine with only
one sign change, so

(cos(kx)′′ = −k2 cos(kx)

Therefore,
sin(kx)′′ + k2 sin(kx) = 0 and cos(kx)′′ + k2 cos(kx) = 0

Since we are assuming k > 0, k =
√

a.

b) This follows from the linearity of the operation of differentiation. With k2 = a,

(c1 sin(kx) + c2 cos(kx))′′ + k2(c1 sin(kx) + c2 cos(kx))

= c1(sin(kx))′′ + c2(cos(kx))′′ + k2c1 sin(kx) + k2c2 cos(kx)

= c1[(sin(kx))′′ + k2 sin(kx)] + c2[(cos(kx))′′ + k2 cos(kx)]

= c1 · 0 + c2 · 0 = 0
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c) Since φ is a constant, d(kx + φ)/dx = k, and (sin(kx + φ)′ = k cos(kx + φ),

(sin(kx + φ)′′ = (k cos(kx + φ))′ = −k2 sin(kx + φ)

Therefore, if a = k2,
(sin(kx + φ)′′ + a sin(kx + φ) = 0

d) The sum formula for the sine function says

sin(kx + φ) = sin(kx) cos(φ) + cos(kx) sin(φ)

In other words
sin(kx + φ) = c1 sin(kx) + c2 cos(kx)

with c1 = cos(φ) and c2 = sin(φ).

1J-4 a) The Pythagorean theorem implies that

c2 = sin2 θ + (1 − cos θ)2 = sin2 θ + 1 − 2 cos θ + cos2 θ = 2 − 2 cos θ

Thus,

c =
√

2 − 2 cos θ = 2

√

1 − cos θ

2
= 2 sin(θ/2)

b) Each angle is θ = 2π/n, so the perimeter of the n-gon is

n sin(2π/n)

As n → ∞, h = 2π/n tends to 0, so

n sin(2π/n) =
2π

h
sin h = 2π

sin h − sin 0

h
→ 2π

d

dx
sinx|x=0 = 2π cosx|x=0 = 2π


