SOLUTIONS TO 18.01 EXERCISES

Unit 1. Differentiation

1A. Graphing

$\mathbf{1 A} \mathbf{- 1 , 2}$ a) $y=(x-1)^{2}-2$
b) $y=3\left(x^{2}+2 x\right)+2=3(x+1)^{2}-1$

1a

1b

2a

2b
$\mathbf{1 A - 3}$ a) $f(-x)=\frac{(-x)^{3}-3 x}{1-(-x)^{4}}=\frac{-x^{3}-3 x}{1-x^{4}}=-f(x)$, so it is odd.
b) $(\sin (-x))^{2}=(\sin x)^{2}$, so it is even.
c) $\frac{\text { odd }}{\text { even }}$, so it is odd
d) $(1-x)^{4} \neq \pm(1+x)^{4}$: neither.
e) $J_{0}\left((-x)^{2}\right)=J_{0}\left(x^{2}\right)$, so it is even.

1A-4 a) $p(x)=p_{e}(x)+p_{o}(x)$, where $p_{e}(x)$ is the sum of the even powers and $p_{o}(x)$ is the sum of the odd powers
b) $f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}$
$F(x)=\frac{f(x)+f(-x)}{2}$ is even and $G(x)=\frac{f(x)-f(-x)}{2}$ is odd because

$$
F(-x)=\frac{f(-x)+f(-(-x))}{2}=F(x) ; \quad G(-x)=\frac{f(x)-f(-x)}{2}=-G(-x)
$$

c) Use part b:
$\frac{1}{x+a}+\frac{1}{-x+a}=\frac{2 a}{(x+a)(-x+a)}=\frac{2 a}{a^{2}-x^{2}} \quad$ even
$\frac{1}{x+a}-\frac{1}{-x+a}=\frac{-2 x}{(x+a)(-x+a)}=\frac{-2 x}{a^{2}-x^{2}} \quad$ odd
$\Longrightarrow \frac{1}{x+a}=\frac{a}{a^{2}-x^{2}}-\frac{x}{a^{2}-x^{2}}$

[^0]1A-5 a) $y=\frac{x-1}{2 x+3}$. Crossmultiply and solve for x , getting $x=\frac{3 y+1}{1-2 y}$, so the inverse function is $\frac{3 x+1}{1-2 x}$.
b) $y=x^{2}+2 x=(x+1)^{2}-1$
(Restrict domain to $x \leq-1$, so when it's flipped about the diagonal $y=x$, you'll still get the graph of a function.) Solving for x, we get $x=\sqrt{y+1}-1$, so the inverse function is $y=\sqrt{x+1}-1$.

5a

5b
1A-6 a) $A=\sqrt{1+3}=2, \tan c=\frac{\sqrt{3}}{1}, c=\frac{\pi}{3}$. So $\sin x+\sqrt{3} \cos x=2 \sin \left(x+\frac{\pi}{3}\right)$.
b) $\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)$
$\mathbf{1 A - 7}$ a) $3 \sin (2 x-\pi)=3 \sin 2\left(x-\frac{\pi}{2}\right)$, amplitude 3 , period π, phase angle $\pi / 2$.
b) $-4 \cos \left(x+\frac{\pi}{2}\right)=4 \sin x$ amplitude 4 , period 2π, phase angle 0 .

7a

7b

1A-8
$f(x)$ odd $\Longrightarrow f(0)=-f(0) \Longrightarrow f(0)=0$.
So $f(c)=f(2 c)=\cdots=0$, also (by periodicity, where c is the period).
1A-9

c) The graph is made up of segments joining $(0,-6)$ to $(4,3)$ to $(8,-6)$. It repeats in a zigzag with period 8. * This can be derived using:

$$
\begin{aligned}
x / 2-1=-1 & \Longrightarrow x=0 \text { and } g(0)=3 f(-1)-3=-6 \\
x / 2-1=1 & \Longrightarrow x=4 \text { and } g(4)=3 f(1)-3=3 \\
x / 2-1=3 & \Longrightarrow x=8 \text { and } g(8)=3 f(3)-3=-6
\end{aligned}
$$

1B. Velocity and rates of change

1B-1 a) $h=$ height of tube $=400-16 t^{2}$.

$$
\text { average speed } \frac{h(2)-h(0)}{2}=\frac{\left(400-16 \cdot 2^{2}\right)-400}{2}=-32 \mathrm{ft} / \mathrm{sec}
$$

(The minus sign means the test tube is going down. You can also do this whole problem using the function $s(t)=16 t^{2}$, representing the distance down measured from the top. Then all the speeds are positive instead of negative.)
b) Solve $h(t)=0$ (or $s(t)=400)$ to find landing time $t=5$. Hence the average speed for the last two seconds is

$$
\frac{h(5)-h(3)}{2}=\frac{0-\left(400-16 \cdot 3^{2}\right)}{2}=-128 \mathrm{ft} / \mathrm{sec}
$$

c)

$$
\begin{aligned}
\frac{h(t)-h(5)}{t-5} & =\frac{400-16 t^{2}-0}{t-5}=\frac{16(5-t)(5+t)}{t-5} \\
& =-16(5+t) \rightarrow-160 \mathrm{ft} / \mathrm{sec} \text { as } t \rightarrow 5
\end{aligned}
$$

1B-2 A tennis ball bounces so that its initial speed straight upwards is b feet per second. Its height s in feet at time t seconds is

$$
s=b t-16 t^{2}
$$

a)

$$
\begin{aligned}
\frac{s(t+h)-s(t)}{h} & =\frac{b(t+h)-16(t+h)^{2}-\left(b t-16 t^{2}\right)}{h} \\
& =\frac{b t+b h-16 t^{2}-32 t h-16 h^{2}-b t+16 t^{2}}{h} \\
& =\frac{b h-32 t h-16 h^{2}}{h} \\
& =b-32 t-16 h \rightarrow b-32 t \text { as } h \rightarrow 0
\end{aligned}
$$

Therefore, $v=b-32 t$.
b) The ball reaches its maximum height exactly when the ball has finished going up. This is time at which $v(t)=0$, namely, $t=b / 32$.
c) The maximum height is $s(b / 32)=b^{2} / 64$.
d) The graph of v is a straight line with slope -32 . The graph of s is a parabola with maximum at place where $v=0$ at $t=b / 32$ and landing time at $t=b / 16$.

e) If the initial velocity on the first bounce was $b_{1}=b$, and the velocity of the second bounce is b_{2}, then $b_{2}^{2} / 64=(1 / 2) b_{1}^{2} / 64$. Therefore, $b_{2}=b_{1} / \sqrt{2}$. The second bounce is at $b_{1} / 16+b_{2} / 16$.
(continued \rightarrow)
f) If the ball continues to bounce then the landing times form a geometric series

$$
\begin{aligned}
b_{1} / 16+b_{2} / 16+b_{3} / 16+\cdots & =b / 16+b / 16 \sqrt{2}+b / 16(\sqrt{2})^{2}+\cdots \\
& =(b / 16)\left(1+(1 / \sqrt{2})+(1 / \sqrt{2})^{2}+\cdots\right) \\
& =\frac{b / 16}{1-(1 / \sqrt{2})}
\end{aligned}
$$

Put another way, the ball stops bouncing after $1 /(1-(1 / \sqrt{2})) \approx 3.4$ times the length of time the first bounce.

1C. Slope and derivative.

1C-1 a)

$$
\begin{aligned}
\frac{\pi(r+h)^{2}-\pi r^{2}}{h} & =\frac{\pi\left(r^{2}+2 r h+h^{2}\right)-\pi r^{2}}{h}=\frac{\pi\left(2 r h+h^{2}\right)}{h} \\
& =\pi(2 r+h) \\
& \rightarrow 2 \pi r \text { as } h \rightarrow 0
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{(4 \pi / 3)(r+h)^{3}-(4 \pi / 3) r^{3}}{h} & =\frac{(4 \pi / 3)\left(r^{3}+3 r^{2} h+3 r h^{2}+h^{3}\right)-(4 \pi / 3) r^{3}}{h} \\
& =\frac{(4 \pi / 3)\left(3 r^{2} h+3 r h^{2}+h^{3}\right)}{h} \\
& =(4 \pi / 3)\left(3 r^{2}+3 r h+h^{2}\right) \\
& \rightarrow 4 \pi r^{2} \text { as } h \rightarrow 0
\end{aligned}
$$

1C-2 $\frac{f(x)-f(a)}{x-a}=\frac{(x-a) g(x)-0}{x-a}=g(x) \rightarrow g(a)$ as $x \rightarrow a$.
1C-3 a)

$$
\begin{aligned}
\frac{1}{h}\left[\frac{1}{2(x+h)+1}-\frac{1}{2 x+1}\right] & =\frac{1}{h}\left[\frac{2 x+1-(2(x+h)+1)}{(2(x+h)+1)(2 x+1)}\right] \\
& =\frac{1}{h}\left[\frac{-2 h}{(2(x+h)+1)(2 x+1)}\right] \\
& =\frac{-2}{(2(x+h)+1)(2 x+1)} \\
& \longrightarrow \frac{-2}{(2 x+1)^{2}} \text { as } h \rightarrow 0
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{2(x+h)^{2}+5(x+h)+4-\left(2 x^{2}+5 x+4\right)}{h} & =\frac{2 x^{2}+4 x h+2 h^{2}+5 x+5 h-2 x^{2}-5 x}{h} \\
& =\frac{4 x h+2 h^{2}+5 h}{h}=4 x+2 h+5 \\
& \longrightarrow 4 x+5 \text { as } h \rightarrow 0
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{1}{h}\left[\frac{1}{(x+h)^{2}+1}-\frac{1}{x^{2}+1}\right] & =\frac{1}{h}\left[\frac{\left(x^{2}+1\right)-\left((x+h)^{2}+1\right)}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}\right] \\
& =\frac{1}{h}\left[\frac{x^{2}+1-x^{2}-2 x h-h^{2}-1}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}\right] \\
& =\frac{1}{h}\left[\frac{-2 x h-h^{2}}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}\right] \\
& =\frac{-2 x-h}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& \longrightarrow \frac{-2 x}{\left(x^{2}+1\right)^{2}} \text { as } h \rightarrow 0
\end{aligned}
$$

d) Common denominator:

$$
\frac{1}{h}\left[\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right]=\frac{1}{h}\left[\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x+h} \sqrt{x}}\right]
$$

Now simplify the numerator by multiplying numerator and denominator by $\sqrt{x}+\sqrt{x+h}$, and using $(a-b)(a+b)=a^{2}-b^{2}$:

$$
\begin{aligned}
\frac{1}{h}\left[\frac{(\sqrt{x})^{2}-(\sqrt{x+h})^{2}}{\sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})}\right] & =\frac{1}{h}\left[\frac{x-(x+h)}{\sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})}\right] \\
& =\frac{1}{h}\left[\frac{-h}{\sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})}\right] \\
& =\left[\frac{-1}{\sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})}\right] \\
& \longrightarrow \frac{-1}{2(\sqrt{x})^{3}}=-\frac{1}{2} x^{-3 / 2} \text { as } h \rightarrow 0
\end{aligned}
$$

e) For part (a), $-2 /(2 x+1)^{2}<0$, so there are no points where the slope is 1 or 0 . For slope -1 ,

$$
-2 /(2 x+1)^{2}=-1 \Longrightarrow(2 x+1)^{2}=2 \Longrightarrow 2 x+1= \pm \sqrt{2} \Longrightarrow x=-1 / 2 \pm \sqrt{2} / 2
$$

For part (b), the slope is 0 at $x=-5 / 4,1$ at $x=-1$ and -1 at $x=-3 / 2$.
1C-4 Using Problem 3,
a) $f^{\prime}(1)=-2 / 9$ and $f(1)=1 / 3$, so $y=-(2 / 9)(x-1)+1 / 3=(-2 x+5) / 9$
b) $f(a)=2 a^{2}+5 a+4$ and $f^{\prime}(a)=4 a+5$, so

$$
y=(4 a+5)(x-a)+2 a^{2}+5 a+4=(4 a+5) x-2 a^{2}+4
$$

c) $f(0)=1$ and $f^{\prime}(0)=0$, so $y=0(x-0)+1$, or $y=1$.
d) $f(a)=1 / \sqrt{a}$ and $f^{\prime}(a)=-(1 / 2) a^{-3 / 2}$, so

$$
y=-(1 / 2) a^{3 / 2}(x-a)+1 / \sqrt{a}=-a^{-3 / 2} x+(3 / 2) a^{-1 / 2}
$$

1C-5 Method 1. $y^{\prime}(x)=2(x-1)$, so the tangent line through $\left(a, 1+(a-1)^{2}\right)$ is

$$
y=2(a-1)(x-a)+1+(a-1)^{2}
$$

In order to see if the origin is on this line, plug in $x=0$ and $y=0$, to get the following equation for a.

$$
0=2(a-1)(-a)+1+(a-1)^{2}=-2 a^{2}+2 a+1+a^{2}-2 a+1=-a^{2}+2
$$

Therefore $a= \pm \sqrt{2}$ and the two tangent lines through the origin are

$$
y=2(\sqrt{2}-1) x \text { and } y=-2(\sqrt{2}+1) x
$$

(Because these are lines throught the origin, the constant terms must cancel: this is a good check of your algebra!)

Method 2. Seek tangent lines of the form $y=m x$. Suppose that $y=m x$ meets $y=1+(x-1)^{2}$, at $x=a$, then $m a=1+(a-1)^{2}$. In addition we want the slope $y^{\prime}(a)=2(a-1)$ to be equal to m, so $m=2(a-1)$. Substituting for m we find

$$
2(a-1) a=1+(a-1)^{2}
$$

This is the same equation as in method $1: a^{2}-2=0$, so $a= \pm \sqrt{2}$ and $m=2(\pm \sqrt{2}-1)$, and the two tangent lines through the origin are as above,

$$
y=2(\sqrt{2}-1) x \text { and } y=-2(\sqrt{2}+1) x
$$

1C-6

5a

5b

5c

5d

1D. Limits and continuity

1D-1 Calculate the following limits if they exist. If they do not exist, then indicate whether they are $+\infty,-\infty$ or undefined.
a) -4
b) $8 / 3$
c) undefined (both $\pm \infty$ are possible)
d) Note that $2-x$ is negative when $x>2$, so the limit is $-\infty$
e) Note that $2-x$ is positive when $x<2$, so the limit is $+\infty$ (can also be written ∞)
f) $\frac{4 x^{2}}{x-2}=\frac{4 x}{1-(2 / x)} \rightarrow \frac{\infty}{1}=\infty$ as $x \rightarrow \infty$
g) $\frac{4 x^{2}}{x-2}-4 x=\frac{4 x^{2}-4 x(x-2)}{x-2}=\frac{8 x}{x-2}=\frac{8}{1-(2 / x)} \rightarrow 8$ as $x \rightarrow \infty$
i) $\frac{x^{2}+2 x+3}{3 x^{2}-2 x+4}=\frac{1+(2 / x)+\left(3 / x^{2}\right)}{\left.3-(2 / x)+4 / x^{2}\right)} \rightarrow \frac{1}{3}$ as $x \rightarrow \infty$
j) $\frac{x-2}{x^{2}-4}=\frac{x-2}{(x-2)(x+2)}=\frac{1}{x+2} \rightarrow \frac{1}{4}$ as $x \rightarrow 2$

1D-2
a) $\lim _{x \rightarrow 0+} \sqrt{x}=0$
b) $\lim _{x \rightarrow 1+} \frac{1}{x-1}=\infty$
$\lim _{x \rightarrow 1-} \frac{1}{x-1}=-\infty$
c) $\lim _{x \rightarrow 1}(x-1)^{-4}=\infty$ (left and right hand limits are same)
d) $\lim _{x \rightarrow 0}|\sin x|=0$ (left and right hand limits are same)
e) $\lim _{x \rightarrow 0+} \frac{|x|}{x}=1 \quad \lim _{x \rightarrow 0-} \frac{|x|}{x}=-1$

1D-3
a) $x=2$ removable
$x=-2$ infinite
b) $x=0, \pm \pi, \pm 2 \pi, \ldots$ infinite
c) $x=0$ removable
d) $x=0$ removable
e) $x=0$ jump
f) $x=0$ removable

1D-4

1D-5 a) for continuity, want $a x+b=1$ when $x=1$. Ans.: all a, b such that $a+b=1$
b) $\frac{d y}{d x}=\frac{d\left(x^{2}\right)}{d x}=2 x=2$ when $x=1$. We have also $\frac{d(a x+b)}{d x}=a$. Therefore, to make $f^{\prime}(x)$ continuous, we want $a=2$.

Combining this with the condition $a+b=1$ from part (a), we get finally $b=-1, a=2$.

1D-6 a) $f(0)=0^{2}+4 \cdot 0+1=1$. Match the function values:

$$
f\left(0^{-}\right)=\lim _{x \rightarrow 0} a x+b=b, \quad \text { so } b=1 \text { by continuity. }
$$

Next match the slopes:

$$
f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0} 2 x+4=4
$$

and $f^{\prime}\left(0^{-}\right)=a$. Therefore, $a=4$, since $f^{\prime}(0)$ exists.
b)

$$
f(1)=1^{2}+4 \cdot 1+1=6 \text { and } f\left(1^{-}\right)=\lim _{x \rightarrow 1} a x+b=a+b
$$

Therefore continuity implies $a+b=6$. The slope from the right is

$$
f^{\prime}\left(1^{+}\right)=\lim _{x \rightarrow 1} 2 x+4=6
$$

Therefore, this must equal the slope from the left, which is a. Thus, $a=6$ and $b=0$.
1D-7

$$
f(1)=c 1^{2}+4 \cdot 1+1=c+5 \text { and } f\left(1^{-}\right)=\lim _{x \rightarrow 1} a x+b=a+b
$$

Therefore, by continuity, $c+5=a+b$. Next, match the slopes from left and right:

$$
f^{\prime}\left(1^{+}\right)=\lim _{x \rightarrow 1} 2 c x+4=2 c+4 \text { and } f^{\prime}\left(1^{-}\right)=\lim _{x \rightarrow 1} a=a
$$

Therefore,

$$
a=2 c+4 \text { and } b=-c+1
$$

1D-8
a)

$$
f(0)=\sin (2 \cdot 0)=0 \text { and } f\left(0^{+}\right)=\lim _{x \rightarrow 0} a x+b=b
$$

Therefore, continuity implies $b=0$. The slope from each side is

$$
f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0} 2 \cos (2 x)=2 \text { and } f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0} a=a
$$

Therefore, we need $a \neq 2$ in order that f not be differentiable.
b)

$$
f(0)=\cos (2 \cdot 0)=1 \text { and } f\left(0^{+}\right)=\lim _{x \rightarrow 0} a x+b=b
$$

Therefore, continuity implies $b=1$. The slope from each side is

$$
f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0}-2 \sin (2 x)=0 \text { and } f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0} a=a
$$

Therefore, we need $a \neq 0$ in order that f not be differentiable.
1D-9 There cannot be any such values because every differentiable function is continuous.

1E: Differentiation formulas: polynomials, products, quotients

1E-1 Find the derivative of the following polynomials
a) $10 x^{9}+15 x^{4}+6 x^{2}$
b) $0\left(e^{2}+1 \approx 8.4\right.$ is a constant and the derivative of a constant is zero.)
c) $1 / 2$
d) By the product rule: $\left(3 x^{2}+1\right)\left(x^{5}+x^{2}\right)+\left(x^{3}+x\right)\left(5 x^{4}+2 x\right)=8 x^{7}+6 x^{5}+5 x^{4}+3 x^{2}$. Alternatively, multiply out the polynomial first to get $x^{8}+x^{6}+x^{5}+x^{3}$ and then differentiate.

1E-2 Find the antiderivative of the following polynomials
a) $a x^{2} / 2+b x+c$, where a and b are the given constants and c is a third constant.
b) $x^{7} / 7+(5 / 6) x^{6}+x^{4}+c$
c) The only way to get at this is to multiply it out: $x^{6}+2 x^{3}+1$. Now you can take the antiderivative of each separate term to get

$$
\frac{x^{7}}{7}+\frac{x^{4}}{2}+x+c
$$

Warning: The answer is not $(1 / 3)\left(x^{3}+1\right)^{3}$. (The derivative does not match if you apply the chain rule, the rule to be treated below in E4.)

1E-3 $y^{\prime}=3 x^{2}+2 x-1=0 \Longrightarrow(3 x-1)(x+1)=0$. Hence $x=1 / 3$ or $x=-1$ and the points are $(1 / 3,49 / 27)$ and $(-1,3)$

1E-4 a) $f(0)=4$, and $f\left(0^{-}\right)=\lim _{x \rightarrow 0} 5 x^{5}+3 x^{4}+7 x^{2}+8 x+4=4$. Therefore the function is continuous for all values of the parameters.

$$
f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0} 2 a x+b=b \text { and } f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0} 25 x^{4}+12 x^{3}+14 x+8=8
$$

Therefore, $b=8$ and a can have any value.
b) $f(1)=a+b+4$ and $f\left(1^{+}\right)=5+3+7+8+4=27$. So by continuity,

$$
a+b=23
$$

$$
f^{\prime}\left(1^{-}\right)=\lim _{x \rightarrow 1} 2 a x+b=2 a+b ; \quad \quad f^{\prime}\left(1^{+}\right)=\lim _{x \rightarrow 1} 25 x^{4}+12 x^{3}+14 x+8=59 .
$$

Therefore, differentiability implies

$$
2 a+b=59
$$

Subtracting the first equation, $a=59-23=36$ and hence $b=-13$.
1E-5
a) $\frac{1}{(1+x)^{2}}$
b) $\frac{1-2 a x-x^{2}}{\left(x^{2}+1\right)^{2}}$
c) $\frac{-x^{2}-4 x-1}{\left(x^{2}-1\right)^{2}}$
d) $3 x^{2}-1 / x^{2}$

1F. Chain rule, implicit differentiation

$\mathbf{1 F - 1}$ a) Let $u=\left(x^{2}+2\right)$

$$
\frac{d}{d x} u^{2}=\frac{d u}{d x} \frac{d}{d u} u^{2}=(2 x)(2 u)=4 x\left(x^{2}+2\right)=4 x^{3}+8 x
$$

Alternatively,

$$
\frac{d}{d x}\left(x^{2}+2\right)^{2}=\frac{d}{d x}\left(x^{4}+4 x^{2}+4\right)=4 x^{3}+8 x
$$

b) Let $u=\left(x^{2}+2\right)$; then $\frac{d}{d x} u^{100}=\frac{d u}{d x} \frac{d}{d u} u^{100}=(2 x)\left(100 u^{99}\right)=(200 x)\left(x^{2}+2\right)^{99}$.

1F-2 Product rule and chain rule:

$$
10 x^{9}\left(x^{2}+1\right)^{10}+x^{10}\left[10\left(x^{2}+1\right)^{9}(2 x)\right]=10\left(3 x^{2}+1\right) x^{9}\left(x^{2}+1\right)^{9}
$$

1F-3 $y=x^{1 / n} \Longrightarrow y^{n}=x \Longrightarrow n y^{n-1} y^{\prime}=1$. Therefore,

$$
y^{\prime}=\frac{1}{n y^{n-1}}=\frac{1}{n} y^{1-n}=\frac{1}{n} x^{\frac{1}{n}-1}
$$

1F-4 $(1 / 3) x^{-2 / 3}+(1 / 3) y^{-2 / 3} y^{\prime}=0$ implies

$$
y^{\prime}=-x^{-2 / 3} y^{2 / 3}
$$

Put $u=1-x^{1 / 3}$. Then $y=u^{3}$, and the chain rule implies

$$
\frac{d y}{d x}=3 u^{2} \frac{d u}{d x}=3\left(1-x^{1 / 3}\right)^{2}\left(-(1 / 3) x^{-2 / 3}\right)=-x^{-2 / 3}\left(1-x^{1 / 3}\right)^{2}
$$

The chain rule answer is the same as the one using implicit differentiation because

$$
y=\left(1-x^{1 / 3}\right)^{3} \Longrightarrow y^{2 / 3}=\left(1-x^{1 / 3}\right)^{2}
$$

1F-5 Implicit differentiation gives $\cos x+y^{\prime} \cos y=0$. Horizontal slope means $y^{\prime}=0$, so that $\cos x=0$. These are the points $x=\pi / 2+k \pi$ for every integer k. Recall that $\sin (\pi / 2+k \pi)=(-1)^{k}$, i.e., 1 if k is even and -1 if k is odd. Thus at $x=\pi / 2+k \pi$, $\pm 1+\sin y=1 / 2$, or $\sin y=\mp 1+1 / 2$. But $\sin y=3 / 2$ has no solution, so the only solutions are when k is even and in that case $\sin y=-1+1 / 2$, so that $y=-\pi / 6+2 n \pi$ or $y=7 \pi / 6+2 n \pi$. In all there are two grids of points at the vertices of squares of side 2π, namely the points

$$
(\pi / 2+2 k \pi,-\pi / 6+2 n \pi) \text { and }(\pi / 2+2 k \pi, 7 \pi / 6+2 n \pi) ; \quad k, n \text { any integers. }
$$

1F-6 Following the hint, let $z=-x$. If f is even, then $f(x)=f(z)$ Differentiating and using the chain rule:

$$
f^{\prime}(x)=f^{\prime}(z)(d z / d x)=-f^{\prime}(z) \quad \text { because } d z / d x=-1
$$

But this means that f^{\prime} is odd. Similarly, if g is odd, then $g(x=-g(z)$. Differentiating and using the chain rule:

$$
g^{\prime}(x)=-g^{\prime}(z)(d z / d x)=g^{\prime}(z) \quad \text { because } d z / d x=-1
$$

1F-7 a) $\frac{d D}{d x}=\frac{1}{2}\left((x-a)^{2}+y_{0}{ }^{2}\right)^{-1 / 2}(2(x-a))=\frac{x-a}{\sqrt{(x-a)^{2}+y_{0}{ }^{2}}}$
b) $\frac{d m}{d v}=m_{0} \cdot \frac{-1}{2}\left(1-v^{2} / c^{2}\right)^{-3 / 2} \cdot \frac{-2 v}{c^{2}}=\frac{m_{0} v}{c^{2}\left(1-v^{2} / c^{2}\right)^{3 / 2}}$
c) $\frac{d F}{d r}=m g \cdot\left(-\frac{3}{2}\right)\left(1+r^{2}\right)^{-5 / 2} \cdot 2 r=\frac{-3 m g r}{\left(1+r^{2}\right)^{5 / 2}}$
d) $\frac{d Q}{d t}=a t \cdot \frac{-6 b t}{\left(1+b t^{2}\right)^{4}}+\frac{a}{\left(1+b t^{2}\right)^{3}}=\frac{a\left(1-5 b t^{2}\right)}{\left(1+b t^{2}\right)^{4}}$
$\mathbf{1 F - 8}$ a) $V=\frac{1}{3} \pi r^{2} h \Longrightarrow 0=\frac{1}{3} \pi\left(2 r r^{\prime} h+r^{2}\right) \Longrightarrow r^{\prime}=\frac{-r^{2}}{2 r h}=\frac{-r}{2 h}$
b) $P V^{c}=n R T \Longrightarrow P^{\prime} V^{c}+P \cdot c V^{c-1}=0 \Longrightarrow P^{\prime}=-\frac{c P V^{c-1}}{V^{c}}=-\frac{c P}{V}$
c) $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$ implies

$$
0=2 a a^{\prime}+2 b-2\left(\cos \theta\left(a^{\prime} b+a\right)\right) \Longrightarrow a^{\prime}=\frac{-2 b+2 \cos \theta \cdot a}{2 a-2 \cos \theta \cdot b}=\frac{a \cos \theta-b}{a-b \cos \theta}
$$

1G. Higher derivatives

$\mathbf{1 G - 1}$ a) $6-x^{-3 / 2}$
b) $\frac{-10}{(x+5)^{3}}$
c) $\frac{-10}{(x+5)^{3}}$
d) 0

1G-2 If $y^{\prime \prime \prime}=0$, then $y^{\prime \prime}=c_{0}$, a constant. Hence $y^{\prime}=c_{0} x+c_{1}$, where c_{1} is some other constant. Next, $y=c_{0} x^{2} / 2+c_{1} x+c_{2}$, where c_{2} is yet another constant. Thus, y must be a quadratic polynomial, and any quadratic polynomial will have the property that its third derivative is identically zero.

1G-3

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Longrightarrow \frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}}=0 \Longrightarrow y^{\prime}=-\left(b^{2} / a^{2}\right)(x / y)
$$

Thus,

$$
\begin{aligned}
y^{\prime \prime} & =-\left(\frac{b^{2}}{a^{2}}\right)\left(\frac{y-x y^{\prime}}{y^{2}}\right)=-\left(\frac{b^{2}}{a^{2}}\right)\left(\frac{y+x\left(b^{2} / a^{2}\right)(x / y)}{y^{2}}\right) \\
& =-\left(\frac{b^{4}}{y^{3} a^{2}}\right)\left(y^{2} / b^{2}+x^{2} / a^{2}\right)=-\frac{b^{4}}{a^{2} y^{3}}
\end{aligned}
$$

1G-4 $y=(x+1)^{-1}$, so $y^{(1)}=-(x+1)^{-2}, y^{(2)}=(-1)(-2)(x+1)^{-3}$, and

$$
y^{(3)}=(-1)(-2)(-3)(x+1)^{-4}
$$

The pattern is

$$
y^{(n)}=(-1)^{n}(n!)(x+1)^{-n-1}
$$

1G-5 a) $y^{\prime}=u^{\prime} v+u v^{\prime} \quad \Longrightarrow \quad y^{\prime \prime}=u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}$
b) Formulas above do coincide with Leibniz's formula for $n=1$ and $n=2$. To calculate $y^{(p+q)}$ where $y=x^{p}(1+x)^{q}$, use $u=x^{p}$ and $v=(1+x)^{q}$. The only term in the Leibniz formula that is not 0 is $\binom{n}{k} u^{(p)} v^{(q)}$, since in all other terms either one factor or the other is 0 . If $u=x^{p}, u^{(p)}=p$!, so

$$
y^{(p+q)}=\binom{n}{p} p!q!=\frac{n!}{p!q!} \cdot p!q!=n!
$$

1H. Exponentials and Logarithms: Algebra

$\mathbf{1 H - 1}$ a) To see when $y=y_{0} / 2$, we must solve the equation $\quad \frac{y_{0}}{2}=y_{0} e^{-k t}$, or $\frac{1}{2}=e^{-k t}$.
Take \ln of both sides: $-\ln 2=-k t$, from which $t=\frac{\ln 2}{k}$.
b) $y_{1}=y_{0} e^{k t_{1}}$ by assumption, $\lambda=\frac{-\ln 2}{k} y_{0} e^{k\left(t_{1}+\lambda\right)}=y_{0} e^{k t_{1}} \cdot e^{k \lambda}=y_{1} \cdot e^{-\ln 2}=y_{1} \cdot \frac{1}{2}$

1H-2 $p H=-\log _{10}\left[H^{+}\right]$; by assumption, $\left[H^{+}\right]_{\text {dil }}=\frac{1}{2}\left[H^{+}\right]_{\text {orig }}$. Take $-\log _{10}$ of both sides (note that $\log 2 \approx .3$):

$$
-\log \left[H^{+}\right]_{d i l}=\log 2-\log \left[H^{+}\right]_{\text {orig }} \Longrightarrow p H_{\text {dil }}=p H_{\text {orig }}+\log _{2}
$$

1H-3 a) $\ln (y+1)+\ln (y-1)=2 x+\ln x$; exponentiating both sides and solving for y :

$$
(y+1) \cdot(y-1)=e^{2 x} \cdot x \Longrightarrow y^{2}-1=x e^{2 x} \Longrightarrow y=\sqrt{x e^{2 x}+1}, \text { since } y>0
$$

b) $\log (y+1)-\log (y-1)=-x^{2}$; exponentiating, $\frac{y+1}{y-1}=10^{-x^{2}}$. Solve for y; to simplify the algebra, let $A=10^{-x^{2}}$. Crossmultiplying, $y+1=A y-A \Longrightarrow y=\frac{A+1}{A-1}=\frac{10^{-x^{2}}+1}{10^{-x^{2}}-1}$
c) $2 \ln y-\ln (y+1)=x$; exponentiating both sides and solving for y :
$\frac{y^{2}}{y+1}=e^{x} \Longrightarrow y^{2}-e^{x} y-e^{x}=0 \Longrightarrow y=\frac{e^{x} \sqrt{e^{2 x}+4 e^{x}}}{2}$, since $y-1>0$.
1H-4 $\quad \frac{\ln a}{\ln b}=c \Rightarrow \ln a=c \ln b \Rightarrow a=e^{c \ln b}=e^{\ln b^{c}}=b^{c} . \quad$ Similarly, $\quad \frac{\log a}{\log b}=c \Rightarrow a=b^{c}$.
1H-5 a) Put $u=e^{x} \quad$ (multiply top and bottom by e^{x} first): $\frac{u^{2}+1}{u^{2}-1}=y$; this gives $u^{2}=\frac{y+1}{y-1}=e^{2 x} ;$ taking $\ln : \quad 2 x=\ln \left(\frac{y+1}{y-1}\right), \quad x=\frac{1}{2} \ln \left(\frac{y+1}{y-1}\right)$
b) $e^{x}+e^{-x}=y$; putting $u=e^{x}$ gives $u+\frac{1}{u}=y$; solving for u gives $u^{2}-y u+1=0$ so that $u=\frac{y \pm \sqrt{y^{2}-4}}{2}=e^{x} ; \quad$ taking $\ln : \quad x=\ln \left(\frac{y \pm \sqrt{y^{2}-4}}{2}\right)$

1H-6 $\quad A=\log e \cdot \ln 10=\ln \left(10^{\log e}\right)=\ln (e)=1 ; \quad$ similarly, $\log _{b} a \cdot \log _{a} b=1$

1H-7 a) If I_{1} is the intensity of the jet and I_{2} is the intensity of the conversation, then

$$
\log _{10}\left(I_{1} / I_{2}\right)=\log _{10}\left(\frac{I_{1} / I_{0}}{I_{2} / I_{0}}\right)=\log _{10}\left(I_{1} / I_{0}\right)-\log _{10}\left(I_{2} / I_{0}\right)=13-6=7
$$

Therefore, $I_{1} / I_{2}=10^{7}$.
b) $I=C / r^{2}$ and $I=I_{1}$ when $r=50$ implies

$$
I_{1}=C / 50^{2} \Longrightarrow C=I_{1} 50^{2} \Longrightarrow I=I_{1} 50^{2} / r^{2}
$$

This shows that when $r=100$, we have $I=I_{1} 50^{2} / 100^{2}=I_{1} / 4$. It follows that

$$
10 \log _{10}\left(I / I_{0}\right)=10 \log _{10}\left(I_{1} / 4 I_{0}\right)=10 \log _{10}\left(I_{1} / I_{0}\right)-10 \log _{10} 4 \approx 130-6.0 \approx 124
$$

The sound at 100 meters is 124 decibels.
The sound at 1 km has $1 / 100$ the intensity of the sound at 100 meters, because $100 \mathrm{~m} / 1 \mathrm{~km}=$ $1 / 10$.

$$
10 \log _{10}(1 / 100)=10(-2)=-20
$$

so the decibel level is $124-20=104$.

1I. Exponentials and Logarithms: Calculus

1I-1 a) $(x+1) e^{x}$
b) $4 x e^{2 x}$
c) $(-2 x) e^{-x^{2}}$
d) $\ln x$
e) $2 / x$
f) $2(\ln x) / x$
g) $4 x e^{2 x^{2}}$
h) $\left(x^{x}\right)^{\prime}=\left(e^{x \ln x}\right)^{\prime}=(x \ln x)^{\prime} e^{x \ln x}=(\ln x+1) e^{x \ln x}=(1+\ln x) x^{x}$
i) $\left(\begin{array}{llll}\left.e^{x}-e^{-x}\right) / 2 & \text { j) }\left(e^{x}+e^{-x}\right) / 2 & \text { k) }-1 / x & \text { l) }-1 / x(\ln x)^{2}\end{array} \quad\right.$ m) $-2 e^{x} /\left(1+e^{x}\right)^{2}$

1I-2

1I-3 a) As $n \rightarrow \infty, h=1 / n \rightarrow 0$.

$$
n \ln \left(1+\frac{1}{n}\right)=\frac{\ln (1+h)}{h}=\left.\frac{\ln (1+h)-\ln (1)}{h} \underset{h \rightarrow 0}{\longrightarrow} \frac{d}{d x} \ln (1+x)\right|_{x=0}=1
$$

Therefore,

$$
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)=1
$$

b) Take the logarithm of both sides. We need to show

$$
\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}=\ln e=1
$$

But

$$
\ln \left(1+\frac{1}{n}\right)^{n}=n \ln \left(1+\frac{1}{n}\right)
$$

so the limit is the same as the one in part (a).

1I-4 a)

$$
\left(1+\frac{1}{n}\right)^{3 n}=\left(\left(1+\frac{1}{n}\right)^{n}\right)^{3} \longrightarrow e^{3} \text { as } n \rightarrow \infty
$$

b) Put $m=n / 2$. Then

$$
\left(1+\frac{2}{n}\right)^{5 n}=\left(1+\frac{1}{m}\right)^{10 m}=\left(\left(1+\frac{1}{m}\right)^{m}\right)^{10} \longrightarrow e^{10} \text { as } m \rightarrow \infty
$$

c) Put $m=2 n$. Then

$$
\left(1+\frac{1}{2 n}\right)^{5 n}=\left(1+\frac{1}{m}\right)^{5 m / 2}=\left(\left(1+\frac{1}{m}\right)^{m}\right)^{5 / 2} \longrightarrow e^{5 / 2} \text { as } m \rightarrow \infty
$$

1J. Trigonometric functions

$\mathbf{1 J} \mathbf{- 1}$ a) $10 x \cos \left(5 x^{2}\right)$
b) $6 \sin (3 x) \cos (3 x)$
c) $-2 \sin (2 x) / \cos (2 x)=-2 \tan (2 x)$
d) $-2 \sin x /(2 \cos x)=-\tan x$. (Why did the factor 2 disappear? Because $\ln (2 \cos x)=$ $\ln 2+\ln (\cos x)$, and the derivative of the constant $\ln 2$ is zero.)
e) $\frac{x \cos x-\sin x}{x^{2}}$
f) $-\left(1+y^{\prime}\right) \sin (x+y)$
g) $-\sin (x+y)$
h) $2 \sin x \cos x e^{\sin ^{2} x}$
i) $\frac{\left(x^{2} \sin x\right)^{\prime}}{x^{2} \sin x}=\frac{2 x \sin x+x^{2} \cos x}{x^{2} \sin x}=\frac{2}{x}+\cot x$. Alternatively,

$$
\ln \left(x^{2} \sin x\right)=\ln \left(x^{2}\right)+\ln (\sin x)=2 \ln x+\ln \sin x
$$

Differentiating gives $\quad \frac{2}{x}+\frac{\cos x}{\sin x}=\frac{2}{x}+\cot x$
j) $2 e^{2 x} \sin (10 x)+10 e^{2 x} \cos (10 x) \quad$ k) $6 \tan (3 x) \sec ^{2}(3 x)=6 \sin x / \cos ^{3} x$
l) $-x\left(1-x^{2}\right)^{-1 / 2} \sec \left(\sqrt{1-x^{2}}\right) \tan \left(\sqrt{1-x^{2}}\right)$
$\mathrm{m})$ Using the chain rule repeatedly and the trigonometric double angle formulas,

$$
\begin{aligned}
\left(\cos ^{2} x-\sin ^{2} x\right)^{\prime} & =-2 \cos x \sin x-2 \sin x \cos x=-4 \cos x \sin x \\
\left(2 \cos ^{2} x\right)^{\prime} & =-4 \cos x \sin x \\
(\cos (2 x))^{\prime} & =-2 \sin (2 x)=-2(2 \sin x \cos x)
\end{aligned}
$$

The three functions have the same derivative, so they differ by constants. And indeed,

$$
\cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1, \quad\left(\text { using } \sin ^{2} x=1-\cos ^{2} x\right)
$$

n)

$$
5(\sec (5 x) \tan (5 x)) \tan (5 x)+5\left(\sec (5 x)\left(\sec ^{2}(5 x)\right)=5 \sec (5 x)\left(\sec ^{2}(5 x)+\tan ^{2}(5 x)\right)\right.
$$

Other forms: $\quad 5 \sec (5 x)\left(2 \sec ^{2}(5 x)-1\right) ; \quad 10 \sec ^{3}(5 x)-5 \sec (5 x)$
o) 0 because $\sec ^{2}(3 x)-\tan ^{2}(3 x)=1$, a constant - or carry it out for practice.
p) Successive use of the chain rule:

$$
\begin{aligned}
\left(\sin \left(\sqrt{x^{2}+1}\right)\right)^{\prime} & =\cos \left(\sqrt{x^{2}+1}\right) \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x \\
& =\frac{x}{\sqrt{x^{2}+1}} \cos \left(\sqrt{x^{2}+1}\right)
\end{aligned}
$$

q) Chain rule several times in succession:

$$
\begin{aligned}
\left(\cos ^{2} \sqrt{1-x^{2}}\right)^{\prime} & =2 \cos \sqrt{1-x^{2}} \cdot\left(-\sin \sqrt{1-x^{2}}\right) \cdot \frac{-x}{\sqrt{1-x^{2}}} \\
& =\frac{x}{\sqrt{1-x^{2}}} \sin \left(2 \sqrt{1-x^{2}}\right)
\end{aligned}
$$

r) Chain rule again:

$$
\begin{aligned}
\left(\tan ^{2}\left(\frac{x}{x+1}\right)\right) & =2 \tan \left(\frac{x}{x+1}\right) \cdot \sec ^{2}\left(\frac{x}{x+1}\right) \cdot \frac{x+1-x}{(x+1)^{2}} \\
& =\frac{2}{(x+1)^{2}} \tan \left(\frac{x}{x+1}\right) \sec ^{2}\left(\frac{x}{x+1}\right)
\end{aligned}
$$

1J-2 Because $\cos (\pi / 2)=0$,

$$
\lim _{x \rightarrow \pi / 2} \frac{\cos x}{x-\pi / 2}=\lim _{x \rightarrow \pi / 2} \frac{\cos x-\cos (\pi / 2)}{x-\pi / 2}=\left.\frac{d}{d x} \cos x\right|_{x=\pi / 2}=-\left.\sin x\right|_{x=\pi / 2}=-1
$$

$\mathbf{1 J - 3}$ a) $(\sin (k x))^{\prime}=k \cos (k x)$. Hence

$$
(\sin (k x))^{\prime \prime}=(k \cos (k x))^{\prime}=-k^{2} \sin (k x)
$$

Similarly, differentiating cosine twice switches from sine and then back to cosine with only one sign change, so

$$
\left(\cos (k x)^{\prime \prime}=-k^{2} \cos (k x)\right.
$$

Therefore,

$$
\sin (k x)^{\prime \prime}+k^{2} \sin (k x)=0 \text { and } \cos (k x)^{\prime \prime}+k^{2} \cos (k x)=0
$$

Since we are assuming $k>0, k=\sqrt{a}$.
b) This follows from the linearity of the operation of differentiation. With $k^{2}=a$,

$$
\begin{aligned}
\left(c_{1} \sin (k x)\right. & \left.+c_{2} \cos (k x)\right)^{\prime \prime}+k^{2}\left(c_{1} \sin (k x)+c_{2} \cos (k x)\right) \\
& =c_{1}(\sin (k x))^{\prime \prime}+c_{2}(\cos (k x))^{\prime \prime}+k^{2} c_{1} \sin (k x)+k^{2} c_{2} \cos (k x) \\
& =c_{1}\left[(\sin (k x))^{\prime \prime}+k^{2} \sin (k x)\right]+c_{2}\left[(\cos (k x))^{\prime \prime}+k^{2} \cos (k x)\right] \\
& =c_{1} \cdot 0+c_{2} \cdot 0=0
\end{aligned}
$$

c) Since ϕ is a constant, $d(k x+\phi) / d x=k$, and $\left(\sin (k x+\phi)^{\prime}=k \cos (k x+\phi)\right.$,

$$
\left(\sin (k x+\phi)^{\prime \prime}=(k \cos (k x+\phi))^{\prime}=-k^{2} \sin (k x+\phi)\right.
$$

Therefore, if $a=k^{2}$,

$$
\left(\sin (k x+\phi)^{\prime \prime}+a \sin (k x+\phi)=0\right.
$$

d) The sum formula for the sine function says

$$
\sin (k x+\phi)=\sin (k x) \cos (\phi)+\cos (k x) \sin (\phi)
$$

In other words

$$
\sin (k x+\phi)=c_{1} \sin (k x)+c_{2} \cos (k x)
$$

with $c_{1}=\cos (\phi)$ and $c_{2}=\sin (\phi)$.
1J-4 a) The Pythagorean theorem implies that

$$
c^{2}=\sin ^{2} \theta+(1-\cos \theta)^{2}=\sin ^{2} \theta+1-2 \cos \theta+\cos ^{2} \theta=2-2 \cos \theta
$$

Thus,

$$
c=\sqrt{2-2 \cos \theta}=2 \sqrt{\frac{1-\cos \theta}{2}}=2 \sin (\theta / 2)
$$

b) Each angle is $\theta=2 \pi / n$, so the perimeter of the n-gon is

$$
n \sin (2 \pi / n)
$$

As $n \rightarrow \infty, h=2 \pi / n$ tends to 0 , so

$$
n \sin (2 \pi / n)=\frac{2 \pi}{h} \sin h=\left.2 \pi \frac{\sin h-\sin 0}{h} \rightarrow 2 \pi \frac{d}{d x} \sin x\right|_{x=0}=\left.2 \pi \cos x\right|_{x=0}=2 \pi
$$

[^0]: © David Jerison and MIT 1996, 2003

