18.01 REVIEW PROBLEMS AND SOLUTIONS

Unit I: Differentiation

R1-0 Evaluate the derivatives. Assume all letters represent constants, except for the independent and dependent variables occurring in the derivative.
a) $p V^{\gamma}=n R T, \quad \frac{d p}{d V}=?$
b) $m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}, \quad \frac{d m}{d v}=?$
c) $R=\frac{c \omega_{0} \sin (2 k+1) \alpha}{\alpha^{2}+\beta^{2}},\left.\quad \frac{d R}{d \alpha}\right|_{\alpha=0}=?$

R1-1 Differentiate:
a) $\frac{\sin x}{x+1}$
b) $\sin ^{2}(\sqrt{x})$
c) $x^{1 / 3} \tan x$
d) $\frac{x^{2}+2}{\sqrt{x+1}}$
e) $\cos \left(\sqrt{x^{2}+1}\right)$
f) $\cos ^{3}\left(\sqrt{x^{2}+1}\right)$
g) $\tan \left(x^{3}\right)$
h) $x \sec ^{2}(3 x+1)$

R1-2 Consider $f(x)=2 x^{2}+4 x+3$. Where does the tangent line to the graph of $f(x)$ at $x=3$ cross the y -axis?

R1-3 Find the equation of the tangent to the curve $2 x^{2}+x y-y^{2}+2 x-3 y=20$ at the point $(3,2)$.

R1-4 Define the derivative of $f(x)$. Directly from the definition, show that $f^{\prime}(x)=\cos x$ if $f(x)=\sin x$. (You may use without proof: $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1, \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$).

R1-5 Find all real x_{0} such that $f^{\prime}\left(x_{0}\right)=0$:
a) $f(x)=\frac{x}{x^{2}+1}$
b) $f(x)=x^{2}+\cos x$

R1-6 At what points is the tangent to the curve $y^{2}+x y+x^{2}-3=0$ horizontal?
R1-7 State and prove the formula for $(u v)^{\prime}$ in terms of the derivatives of u and v. You may assume any theorems about limits that you need.

R1-8 Derive a formula for $\left(x^{1 / 5}\right)^{\prime}$.
R1-9 a) What is the rate of change of the area A of a square with respect to its side x ?
b) What is the rate of change of the area A of a circle with respect to its radius r ?
c) Explain why one answer is the perimeter of the figure but the other answer is not.

R1-10 Find all values of the constants c and d for which the function $f(x)=\left\{\begin{array}{l}x^{2}+1, x \geq 1 \\ c x+d, x<1\end{array}\right.$ will be (a) continuous, (b) differentiable.

R1-11 Prove or give a counterexample :
a) If $f(x)$ is differentiable then $f(x)$ is continuous.
b) If $f(x)$ is continuous then $f(x)$ is differentiable.

R1-12 Find all values of the constants a and b so that the function $f(x)=\left\{\begin{aligned} \sin x, & x \leq \pi \\ a x+b, & x>\pi\end{aligned}\right.$ will be (a) continuous; (b) differentiable.

R1-13 Evaluate $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}$. (Hint: Let $4 x=t$.)

Unit 2: Applications of Differentiation

R2-1 Sketch the graphs of the following functions, indicating maxima, minima, points of inflection, and concavity.
a) $f(x)=(x-1)^{2}(x+2)$
b) $f(x)=\sin ^{2} x, \quad 0 \leq x \leq 2 \pi$
c) $f(x)=x+1 / x^{2}$
d) $f(x)=x+\sin 2 x$

R2-2 A baseball diamond is a 90 ft . square. A ball is batted along the third base line at a constant speed of 100 ft . per sec. How fast is its distance from first base changing when
a) it is halfway to third base,
b) it reaches third base ?

R2-3 If x and y are the legs of a right triangle whose hypotenuse is $\sqrt{5}$, find the largest value of $2 x+y$.

R2-4 Evaluate the following limits:
a) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\frac{\pi}{2}-x}$
b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
c) $\lim _{x \rightarrow \infty} \frac{x^{17}-4 x^{3}+2 x^{2}}{10 x^{17}+6 x^{10}-x^{3}-5 x^{2}}$

R2-5 Prove or give a counterexample:
a) If $f^{\prime}(c)=0$ then f has a minimum or a maximum at c.
b) If f has a maximum at c and if f is differentiable at c, then $f^{\prime}(c)=0$.

R2-6 Let $f(x)=1-x^{2 / 3}$. Then $f(-1)=f(1)=0$ and yet $f^{\prime}(x) \neq 0$ for $0<x<1$. Find the maximum value of $f(x)$ on the real line, nevertheless.

Why did the standard method fail?
R2-7 A can is made in the shape of a right circular cylinder. What should its proportions

REVIEW PROBLEMS AND SOLUTIONS

be, if its volume is to be 1 and one wants to use the least amount of metal?

R2-8 a) State the mean value theorem.
b) If $f^{\prime}(x)=\frac{1}{1+x^{2}}$ and $f(1)=1$, use the mean value theorem to estimate $f(2)$. (Write your answer in the form $\alpha<f(2)<\beta$.)

R2-9 One of these statements is false and one is true. Prove the true one, and give a counterexample to the false one. (Both statements refer to all x in some interval $a<x<b$.)
a) If $f^{\prime}(x)>0$, then $f(x)$ is an increasing function.
b) If $f(x)$ is an increasing function, then $f^{\prime}(x)>0$.

R2-10 Give examples (either by giving a formula or by a carefully drawn graph) of
a) A function with a relative minimum, but no absolute maximum on $0<x<1$.
b) A function with a relative maximum but no absolute maximum on the interval $0 \leq x \leq 1$.
c) A function $f(x)$ defined on $0 \leq x \leq 1$, with $f(0)<0, f(1)>0$, yet with no root on $0 \leq x \leq 1$.
d) A function $f(x)$ having a relative minimum at 0 , but the following is false: $f^{\prime}(0)=0$.

Unit 3: Integration

R3-1 Evaluate: $\int_{0}^{\pi} \sin x d x, \int_{0}^{3} \sqrt{1+x} d x, \int_{1}^{2} \frac{x^{2}+1}{x^{2}} d x$.
R3-2 Egbert, an MIT nerd bicyclist, is going down a steep hill. At time $t=0$, he starts from rest at the top of the hill; his acceleration while going down is $3 t^{2} \mathrm{ft}$./ sec^{2}, and the hill is 64 ft . long. If the fastest he can go without losing control is 64 ft ./sec., will he survive this harrowing experience? (A nerd bicycle has no brakes.)

R3-3 Evaluate $\int_{0}^{2} x^{2} d x$ directly from the definition of the integral as the limit of a sum. You may use the fact that

$$
\sum_{k=1}^{N} k^{2}=\frac{N(N+1)(2 N+1)}{6}
$$

R3-4 If f is a continuous function, find $f(2)$ if:
а) $\int_{0}^{x} f(t) d t=x^{2}(1+x)$
b) $\int_{0}^{x^{2}} f(t) d t=x^{2}(1+x)$
c) $\int_{0}^{f(x)} t^{2} d t=x^{2}(1+x)$

R3-5 The area under the graph of $f(x)$ and over the interval $0 \leq x \leq a$ is

$$
-\frac{1}{2}+\frac{a^{2}}{4}+\frac{a}{2} \sin a+\frac{1}{2} \cos a
$$

Find $f(\pi / 2)$.
R3-6 Use the trapezoidal rule to estimate the sum $\sqrt[3]{1}+\sqrt[3]{2}+\cdots+\sqrt[3]{10^{6}}$. Is your estimate high or low? Explain your reasoning.

R3- 7 Find the total area of the region above the graph of $y=-2 x$ and below the graph of $y=x-x^{2}$.

R3-8 Use the trapezoidal rule with 6 subintervals to estimate the area under the curve $y=\sqrt{1+x^{2}},-3 \leq x \leq 3$. (You may use: $\sqrt{2} \approx 1.41, \sqrt{5} \approx 2.24, \sqrt{10} \approx 3.16$.

Is your estimate too high or too low? Explain how you know.)
R3-9 Fill in this outline of a proof that $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$. Supply reasons.
a) Put $G(x)=\int_{a}^{x} F^{\prime}(t) d t$. Then $G^{\prime}(x)=F^{\prime}(x)$.
b) Therefore $G(x)=F(x)+c$, and one sees easily that $c=-F(a)$. We're done.

R3-10 The table below gives the known values of a function $f(x)$:

x	0	1	2	3	4	5	6
$f(x)$	1	1.2	1.4	1.3	1.5	1.2	1.1

Use Simpson's Rule to estimate the area under the curve $y=f(x)$ between $x=0$ and $x=6$.
R3-11 Let $f(t)$ be a function, continuous and positive for all t . Let $A(x)$ be the area under the graph of f , between $t=0$ and $t=x$. Explain intuitively from the definition of derivative why $\frac{d A}{d x}=f(x)$.

R3-12 Let $f(x)=\left\{\begin{array}{l}x+1,0 \leq x \leq 2 \\ x-2,2<x \leq 4\end{array}\right.$ Evaluate $\int_{0}^{4} f(x) d x$.
R3-13 Suppose $F(x)$ is a function such that $F^{\prime}(x)=\frac{\sin x}{x}$. In terms of $F(x)$, evaluate the indefinite integral $\int \frac{\sin 3 x}{x} d x$..

R3-14 Find a quadratic polynomial $a x^{2}+b x+c=f(x)$ such that $f(0)=0, f(1)=1$, and the area under the graph between $x=0$ and $x=1$ is 1 .

Unit 4: Applications of integration.

R4-1 The area in the first quadrant bounded by the lines $y=1, x=1, x=3$ and $f(x)=-x^{2}+15$ is rotated about the line $y=1$. Find the volume of the solid thus obtained.

R4-2 Consider the circle $x^{2}+y^{2}=4$. A solid is formed with the given circle as base and such that every cross-section cut by a plane perpendicular to the x-axis is a square. Find the volume of this solid.
R4-3 Find the length of the arc of $y=\frac{1}{3}\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$
R4-4 For a freely falling body, $s=\frac{1}{2} g t^{2}, v=g t=\sqrt{2 g s}$. Show that:
a) the average value of v over the interval $0 \leq t \leq t_{1}$ is one-half the final velocity;
b) the average value of v over the interval $0 \leq s \leq s_{1}$ is two-thirds the final velocity.

R4-5 A bag of sand originally weighing 144 pounds is lifted at a constant rate of $3 \mathrm{ft} . / \mathrm{min}$. the sand leaks out uniformly at such a rate that half the sand is lost when the bag has been lifted 18 feet. find the work done in lifting the bag this distance.

R4-6 Find the area inside both loops of the lemniscate $r^{2}=2 a^{2} \cos 2 \theta$.
R4-7 Calculate the volume obtained when the region $\left(-2 \leq x \leq 2,0 \leq y \leq x^{2}\right)$ is rotated about the y -axis.

R4-8 The table below gives the known values of a function $f(x)$:

$$
\begin{array}{cccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
f(x) & 1 & 1.2 & 1.4 & 1.3 & 1.5 & 1.2 & 1.1
\end{array}
$$

Use Simpson's Rule to estimate the volume obtained when the region below the graph of $y=f(x)$ and above the x-axis $(0 \leq x \leq 6)$ is rotated about the x-axis.

R4-9 Winnie the Pooh eats honey at a rate proportional to the amount he has left. If it takes him 1 hour to eat the first half of a pot of honey, how long will it take for him to eat another quarter of a pot? When will he finish?
$\mathbf{R 4 - 1 0}$ a) Write down the definition of $\ln x$ as an integral.
b) Directly from the definition prove that:
i) $\ln (a x)=\ln a+\ln x$;
ii) $\ln x$ is an increasing function.

Unit 5: Integration Techniques

R5-1 Differentiate:
a) $x^{1 / x}, e^{x^{2}} \cdot \ln \left(x^{2}\right)$
b) $\tan ^{-1}\left(\frac{1+x}{1-x}\right)$.

R5-2 Integrate:
a) $\int \sin ^{3} x \cos ^{2} x d x$
b) $\int e^{x} \sin x d x$

R5-3 Integrate:
a) $\int \frac{e^{x}}{1+e^{2 x}} d x$
b) $\int \frac{x+1}{x^{3}-1} d x$
c) $\int \frac{4 x^{2}}{x-2} d x$

R5-4 Integrate:
a) $\int \frac{x+1}{\left(1+x^{2}\right)^{2}} d x$
b) $\int x^{2} \cos x d x$
$\mathbf{R 5 - 5}$ a) Use the reduction formula

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x
$$

to evaluate $\int_{0}^{\pi / 2} \cos ^{6} x d x$.
b) Derive the formula for $D \tan ^{-1} x$ from the formula for $D \tan x$. What are the domain and range of $\tan ^{-1} x$?

