
PI. PROPERTIES OF INTEGRALS

For ease in using the definite integral, it is important to know its properties. Your book
lists the following1 (on the right, we give a name to the property):

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx integrating backwards(1)

∫ a

a

f(x) dx = 0(2)

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx interval addition(3)

∫ b

a

(f + g) dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx linearity(4)

∫ b

a

C f(x) dx = C

∫ b

a

f(x) dx linearity

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx if f(x) ≤ g(x) on [a, b] estimation(5)

Property (5) is useful in estimating definite integrals that cannot be calculated exactly.

Example 1. Show that

∫

1

0

√

1 + x3 dx < 1.3 .

Solution. We estimate the integrand, and then use (6). We have

x3 ≤ x on [0, 1];
∫ 1

0

√

1 + x3 dx ≤
∫ 1

0

√
1 + x dx =

2

3
(1 + x)3/2

]1

0

=
2

3
(2
√

2 − 1) ≈ 1.22 < 1.3 .

We add two more properties to the above list.

(6)

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

≤
∫ b

a

|f(x)| dx . absolute value property

Property (6) is used to estimate the size of an integral whose integrand is both positive and
negative (which often makes the direct use of (5) awkward). The idea behind (6) is that on
the left side, the intervals on which f(x) is negative give a negative value to the integral,
and these “negative” areas lower the overall value of the integral; on the right the integrand
has been changed so that it is always positive, which makes the integral larger.

Example 2. Estimate the size of

∫

100

0

e−x sin xdx .

1see Simmons pp. 214-215
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Solution. A crude estimate would be
∣

∣

∣

∣

∫ 100

0

e−x sinxdx

∣

∣

∣

∣

≤
∫ 100

0

e−x| sinx| dx

≤
∫ 100

0

e−x dx, by (5), since | sin x| ≤ 1;

= −e−x

]100

0

= −e−100 + 1 < 1.

A final property tells one how to change the variable in a definite integral. The formula is
the most important reason for including dx in the notation for the definite integral, that is,

writing

∫ b

a

f(x) dx for the integral, rather than simply

∫ b

a

f(x), as some authors do.

(7)

∫ d

c

f(u) du =

∫ b

a

f(u(x))
du

dx
dx,











u = u(x),

c = u(a),

d = u(b).

change of variables formula

In words, we can change the variable from u to x, provided we

(i) express du in terms of dx; (ii) change the limits of integration.2

There are various possible hypotheses on u(x); the simplest is that it should be differen-
tiable, and either increasing or decreasing on the x-interval [a, b].

Example 3. Evaluate

∫

1

0

du

(1 + u2)3/2
by substituting u = tanx.

Solution. u = 0, 1 corresponds to x = 0, π/4; du = sec2 xdx; 1 + tan2 x = sec2 x; thus
∫ 1

0

du

(1 + u2)3/2
=

∫ π/4

0

sec2 x

sec3 x
dx

=

∫ π/4

0

cosxdx = sin x

]π/4

0

=

√
2

2
.

Proof of (7). We use the First Fundamental Theorem.3 Let F (u) be an antiderivative of
f(u):

F (u) =

∫

f(u) du;(8)

d

dx
F (u(x)) =

dF

du
· du

dx
= f(u)

du

dx
, by the chain rule. So

F (u(x)) =

∫

f(u(x))
du

dx
dx . Therefore(9)

∫ d

c

f(u) du = F (d) − F (c), by the First Fundamental Theorem and (8);

= F (u(b)) − F (u(a)) =

∫ b

a

f(u(x))
du

dx
dx,

by the First Fundamental Theorem and (9). �

. Exercises: Section 3E
2see Simmons p.339 for a discussion and an example
3see Section FT


