
G. GRAPHING FUNCTIONS

To get a quick insight int o how the graph of a function looks, it is very helpful to know
how certain simple operations on the graph are related to the way the function expression
looks. We consider these here.

1. Right-left translation.

Let c > 0. Start with the graph of some function f(x). Keep the x-axis and y-axis fixed,
but move the graph c units to the right, or c units to the left. (See the pictures below.) You
get the graphs of two new functions:

(1) Moving the f(x) graph c units to the

{

right

left
gives the graph of

{

f(x − c)

f(x + c)
.

If f(x) is given by a formula in x, then f(x − c) is the function obtained by replacing x by
x − c wherever it occurs in the formula. For instance,

f(x) = x2 + x ⇒ f(x − 1) = (x − 1)2 + (x − 1) = x2 − x, by algebra.

Example 1. Sketch the graph of f(x) = x2 − 2x + 1.

Solution. By algebra, f(x) = (x − 1)2. Therefore by (1), its graph is
the one obtained by moving the graph of x2 one unit to the right, as shown.
The result is a parabola touching the x-axis at x = 1.
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To see the reason for the rule (1), suppose the graph of f(x) is moved c units to the right:
it becomes then the graph of a new function g(x), whose relation to f(x) is described by
(see the picture):

value of g(x) at x0 = value of f(x) at x0 − c = f(x0 − c) .

This shows that g(x) = f(x − c). The reasoning is similar if the
graph is translated c units to the left. Try giving the argument
yourself while referring to the picture. xx oo
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f(x)h(x) g(x)

The effect of up-down translation of the graph is much simpler to see. If c > 0,

(2) Moving the f(x) graph c units

{

up

down
gives the graph of

{

f(x) + c

f(x) − c
.

since for example moving the graph up by c units has the effect of adding c units to each
function value, and therefore gives us the graph of the function f(x) + c

Example 2. Sketch the graph of 1 +
√

x − 1.

Solution Combine rules (1) and (2). First sketch
√

x, then
move its graph 1 unit to the right to get the graph of

√
x − 1, then

1 unit up to get the graph of 1 +
√

x − 1, as shown.
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Example 3. Sketch the curve y = x2 + 4x + 1.

Solution We “complete the square”:

x2 + 4x + 1 = (x2 + 4x + 4) − 3 = (x + 2)2 − 3 ,

so we move the graph of x2 to the left 2 units, then 3 units down,
getting the graph shown. 3

2

2. Changing scale: stretching and shrinking.

Let c > 1. To stretch the x-axis by the factor c means to move the point 1 to the position
formerly occupied by c, and in general, the point x0 to the position formerly occupied by cx0.
Similarly, to shrink the x-axis by the factor c means to move x0 to the position previously
taken by x0/c. What happens to the graph of f(x) when we stretch or shrink the x-axis?

(3)

{

Stretching

Shrinking
the x-axis by c changes the graph of f(x) into that of

{

f(x/c)

f(cx)
.

The picture explains this rule; it illustrates stretching by the factor
c > 1. The new function has the same value at x0 that f(x) has
at x0/c, so that it is given by the rule x0 → f(x0/c), which means
that it is the function f(x/c).

xx0 c 0

f x( ) f x c( )

If the y-axis is stretched by the factor c > 1, each y-value is multiplied by c, so the new
graph is that of the function cf(x):

(4)

{

Stretching

Shrinking
the y-axis by c changes the graph of f(x) into that of

{

c f(x)

f(x)/c
.

Example 4. Sketch the graph of
1

2x − 1
.

Solution. Start with the graph of 1/x, move it 1 unit to the
right to get the graph of 1/(x − 1), then shrink the x-axis by the
factor 2 to get the graph of the given function. See the picture.

1/2

3. Reflecting in the x- and y-axes: even and odd functions.

To reflect the graph of f(x) in the y-axis, just flip the plane over around
the y-axis. This carries the point (x, y) into the point (−x, y), and the graph
of f(x) into the graph of f(−x). Namely, the new function has the same
y-value at x0 as f(x) has at −x0, so it is given by the rule x0 → f(−x0)
and is the function f(−x).
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-
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Similarly, reflecting the xy-plane in the x-axis carries (x, y) to the point (x,−y) and the
graph of f(x) gets carried into that of −f(x).

Finally, relecting first in the y-axis and then in the x-axis carries the
point (x, y) into the point (−x,−y). This is called a reflection through
the origin. The graph of f(x) gets carried into the graph of −f(−x), by
combining the above two results. Summarizing:

f(x)

-f(-x)
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(5) Reflecting in the











y-axis

x-axis

origin

moves the graph of f(x) into that of











f(−x)

−f(x)

−f(−x).

Of importance are those functions f(x) whose graphs are symmetric with respect to the
y-axis — that is, reflection in the y-axis doesn’t change the graph; such functions are called
even. Functions whose graphs are symmetric with respect to the origin are called odd. In
terms of their expression in x,

f(−x) = f(x) definition of even function(6)

f(−x) = −f(x) definition of odd function(7)

Example 5. Show that a polynomial with only even powers, like x4 − 2x2 + 7, is an
even function, and a polynomial with only odd powers, like 3x5−x3 +2x, is an odd function
— this, by the way, explains the terminology “even” and “odd” used for functions.

Solution. We have to show (6) and (7) hold for polynomials with respectively only even
or odd powers, but this follows immediately from the fact that for any non-negative integer
n, we have

(−x)n = (−1)nxn =

{

xn, if n is even,

−xn, if n is odd.
�

The following easily proved rules predict the odd- or even-ness of the product or quotient
of two odd or even functions:

even · even = even odd · odd = even odd · even = odd(8)

even/even = even odd/odd = even odd/even = odd(9)

Example 6.
x3

1 − x2
is of the form odd/even, therefore it is odd;

(3 + x4)1/2(x − x3) has the form even · odd, so it is odd.

4. The trigonometric functions.

The trigonometric functions offer further illustrations of the ideas about translation,
change of scale, and symmetry that we have been discussing. Your book reviews the standard
facts about them in section 9.1, which you should refer to as needed.

The graphs of sinx and cosx are crudely sketched below. (In calculus, the variable x is
always to be in radians; review radian measure in section 9.1 if you have forgotten it. Briefly,
there are 2π radians in a 360o angle, so that for example a right angle is π/2 radians.)

As the graphs suggest and the unit circle picture shows,

(10) cos(−x) = cosx (even function) sin(−x) = − sinx (odd function).

From the standard triangle at the right, one sees that

1

x

π/2 x-

cos(π/2 − x) = sin x ,
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and since cosx is an even function, this shows that

cos(x − π/2) = sin x .

x
x

sin

sin

x

- x

( )- x
cos(    )

cos x

x- - x

1

(11)

From (11), we see that moving the graph
of cosx to the right by π/2 units turns it
into the graph of sinx. (See picture.)

sin xcos x

π 2π

The trigonometric function

(12) tanx =
sin x

cosx
is also important; its graph is sketched at the right. It is an odd
function, by (9) and (10), since it has the form odd/even.

π
−π

Periodicity

An important property of the trigonometric functions is that they repeat their values:

(13) sin(x + 2π) = sinx, cos(x + 2π) = cosx .

This is so because x + 2π and x represent in radians the same angle.

From the graphical point of view, equations (13) say that if we move the graph of sinx
or cosx to the left by 2π units, it will coincide with itself.

From the function viewpoint, equations (13) say that sinx and cosx are periodic functions,
with period 2π. In general, let c > 0; we say that f(x) is periodic, with period c, if

f(x + c) = f(x) for all x, and(14)

c is the smallest positive number for which (14) is true.(14’)

By rule (1), the graph of a periodic function having period c coincides with itself when it is
translated c units to the left. If we replace x by x− c in (14), we see that the graph will also
coincide with itself if it is moved to the right by c units. But beware: if a function is made
by combining other periodic functions, you cannot always predict the period. For example,
although it is true that

tan(x + 2π) = tanx and cos2(x + 2π) = cos2 x ,

the period of both tanx and cos2x is actually π, as the above figure suggests for tanx.

The general sinusoidal wave.

The graph of sinx is referred to as a “pure wave” or a “sinusoidal oscillation”. We now
consider to what extent we can change how it looks by applying the geometric operations
of translation and scale change discussed earlier.

a) Start with sinx, which has period 2π and oscillates between ±1.

b) Stretch the y axis by the factor A > 0; by (4) this gives A sin x, which has period 2π
and oscillates between ±A.

c) Shrink the x-axis by the factor k > 0; by (3), this gives A sin kx, which has period
2π/k, since

A sin k(x +
2π

k
) = A sin(kx + 2π) = A sin kx.

d) Move the graph φ units to the right; by (1), this gives
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(15) A sin k(x − φ) , A, k > 0, φ ≥ 0, general sinusoidal wave

which has
period 2π/k (the wave repeats itself every 2π/k units);
angular frequency k (has k complete cycles as x goes from 0 to 2π);
amplitude A (the wave oscillates between A and −A);
phase angle φ (the midpoint of the wave is at x = φ).

A

A-

φ
/kπ

Notice that the function (15) depends on three constants: k, A, and φ. We call such
constants parameters; their value determines the shape and position of the wave.

By using trigonometric identities, it is possible to write (15) in another form, which also
has three parameters:

(16) a sinkx + b cos kx

The relation between the parameters in the two forms is:

(17) a = A cos kφ, b = −A sin kφ; A =
√

a2 + b2, tan kφ = −
b

a
.

Proof of the equivalence of (15) and (16).

(15) ⇒ (16): from the identity sin(α + β) = sin α cosβ + cosα sin β, we get

A sin(k(x − φ)) = A sin(kx − kφ) = A cos kφ sin kx − A sin kφ cos kx

which has the form of (16), with the values for a and b given in (17).

(16) ⇒ (15): square the two equations on the left of (17) and add them; this gives

a2 + b2 = A2(cos2 kφ + sin2 kφ) = A2, showing that A =
√

a2 + b2 .

If instead we take the ratio of the two equations on the left of (17), we get −b/a = tan kφ,
as promised. �

Example 7. Find the period, frequency, amplitude, and phase angle of the wave
represented by the functions

a) 2 sin(3x − π/6) b) −2 cos(2x − π/2)

Solution.

a) Writing the function in the form (15), we get 2 sin 3(x − π/18), which shows it has
period 2π/3, frequency 3, amplitude 2, and phase angle π/18 (or 10o).

b) We get rid of the − sign by using − cosx = cos(x − π) — translating the cosine
curve π units to the right is the same as reflecting it in the x-axis (this is the best way to
remember such relations). We get then

−2 cos(2x − π/2) = 2 cos(2x − π/2 − π)

= 2 sin(2x − π), by (11);

= 2 sin 2(x − π/2).
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Thus the period is π, the frequency 2, the amplitude 2, and the phase angle π/2. (Note
that the first three could have been read off immediately without making the above trans-
formation.)

Example 8. Sketch the curve sin 2x + cos 2x .

Solution Transforming it into the form (15), we can get A and φ by using (19):

A =
√

2; tan 2φ = −1 ⇒ 2φ = 135o = 3π/4, ⇒ φ = 3π/8 .

So the function is also representable as
√

2 sin 2(x − 3π/8); it is a wave of amplitude
√

2,
period π, frequncy 2, and phase angle 3π/8, and can be sketched using this data.

5. Reflection in the diagonal line; inverse functions.

As our final geometric operation on graphs, we consider the effect of reflecting a graph
in the diagonal line y = x.

This reflection can be carried out by flipping the plane over about the
diagonal line. Each point of the diagonal stays fixed; the x-and y-axes are
interchanged. The points (a, b) and (b, a) are interchanged, as the picture
shows, because the two rectangles are interchanged.

(b,a)

a,b)

y=x

To see the effect of this on the function, let’s consider first a simple example.

Example 9. If the graph of f(x) = x2, x ≥ 0 is reflected in the diagonal, what
function corresponds to the reflected graph?

Solution. The original curve is the graph of the equation: y = x2, x ≥ 0 .

Reflection corresponds to interchanging the two axes; thus the reflected curve is the graph
of the equation: x = y2, y ≥ 0 .

To find the corresponding function, we have to express y explicitly in terms of x, which
we do by solving the equation for y: y =

√
x, x ≥ 0 ; the restriction on x follows

because if x = y2 and y ≥ 0, then x ≥ 0 also.

y=x, x>02

reflect no change

x=y , y>02 y=  x, x>0
x x

y y

x

y

Remarks.

1. When we flip the curve about the diagonal line, we do not interchange the labels
on the x- and y-axes. The coordinate axes remain the same — it is only the curve that
is moved (imagine it drawn on an overhead-projector transparency, and the transparency
flipped over). This is analogous to our discussion in section 1 of translation, where the curve
was moved to the right, but the coordinate axes themselves remained unchanged.

2. It was necessary in the previous example to restrict the domain of x in the original
function x2, so that after being flipped, its graph was still the graph of a function. If we
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hadn’t, the flipped curve would have been a parabola lying on its side; this is not the graph
of a function, since it has two y-values over each x-value.

The function having the reflected graph, y =
√

x, x ≥ 0 is called the inverse func-
tion to the original function y = x2, x ≥ 0. The general procedure may be represented
schematically by:

y = f(x) −→ x = f(y) −→ y = g(x)

original graph switch x and y reflected graph solve for y reflected graph

In this scheme, the equations x = f(y) and y = g(x) have the same graph; all that has been
done is to transform the equation algebraically, so that y appears as an explicit function
of x. This function g(x) is called the inverse function to f(x) over the given interval; in
general it will be necessary to restrict the domain of f(x) to an interval, so that the reflected
graph will be the graph of a function.

To summarize: f(x) and g(x) are inverse functions if

(i) geometrically, the graphs of f(x) and g(x) are reflections of each other in the diagonal
line y = x;

(ii) analytically, x = f(y) and y = g(x) are equivalent equations, either arising from the
other by solving explicitly for the relevant variable.

Example 10. Find the inverse function to
1

x − 1
, x > 1 .

Solution. We introduce a dependent variable y, then interchange x and y, getting

x =
1

y − 1
, y > 1 .

We solve this algebraically for y, getting

y = 1 +
1

x
, x > 0 .(20)

(The domain is restricted because if y > 1, then equation (20) implies that
x > 0.) The right side of (20) is the desired inverse function. The graphs
are sketched.

1+1/x

1/(x-1)

1

1

It often happens that in determining the inverse to f(x), the equation

(21) x = f(y)

cannot be solved explicitly in terms of previously known functions. In that case, the corre-
sponding equation

(22) y = g(x)

is viewed as defining the inverse function to f(x), when taken with (21). Once again, care
must be taken to restrict the domain of f(x) as necessary to ensure that the relected will
indeed define a function g(x), i.e., will not be multiple-valued. A typical example is the
following.



8

Example 11. Find the inverse function to sinx.

Solution. Considering its graph, we see that for the reflected graph to define a function,
we have to restrict the domain. The most natural choice is to consider the restricted function

(23) y = sinx, −π/2 ≤ x ≤ π/2.

The inverse function is then denoted sin−1 x, or sometimes Arcsin x; it is defined by the
pair of equivalent equations

(24) x = sin y, −π/2 ≤ x ≤ π/2 ⇐⇒ y = sin−1 x, −1 ≤ x ≤ 1.

The domain [−1, 1] of sin−1 x is evident from the picture — it is the same as the range of
sin x over [−π/2, π/2].

As examples of its values, sin−1 = π/2, since sin π/2 = 1; similarly, sin−1 1/2 = π/6.

Care is needed in handling this function. For example, substituting the left equation in
(24) into the right equation says that

(25) sin−1(sin y) = y, −π/2 ≤ y ≤ π/2 .

It is common to see the restriction on y carelessly omitted, since the equation by itself seems
“obvious”. But without the restriction, it is not even true; for example if y = π,

sin−1(sin π) = 0.

y=sin  x
1

-1

/2π

-1

/2π

Exercises: Section 1A


