8. Probability

Brief answers to the unstarred exercises are given at the end of this section.

8A. Discrete Random Variables

8A-1 Buck Fuller rolls a fair dodecahedral die: it has 12 faces, all regular pentagons. The outcome is a random variable X, with integer values $1,2, \ldots, 12$. Find
(a) $\mathrm{P}(X$ is divisible by 3$)$
(b) $\mathrm{P}(X$ is divisible by 5$)$

8A-2 A fair pair of dice is rolled; the output is a random variable Y, with values $2, \ldots, 12$. Answer the same two questions as in the preceding exercise.

8A-3 Referring to Example 1.1B: you pick one of the football team's shoes at random. Find the probability of getting an even size; deduce what the probability of getting an odd size is.

8A-4 Assume that when asked to pick a random positive integer, a person picks the integer n with probability $1 / 2^{n}$. Let X be the associated random variable giving this outcome. Find
(a) $\mathrm{P}(X$ is even $)$;
(b) $\mathrm{P}(X$ is odd $)$.
(c) Show that $6 / 16 \leq \mathrm{P}(X$ is prime $) \leq 7 / 16$.

8A-5 Say Mrs. Field's chocolate chip cookies average 10 chips per cookie. What's the probability of getting 5 or less chips in a cookie? (Assume the number of chips is a Poisson random variable.)

8A-6 Assume the number of calls per night to def-tuv-tuv-oper-oper is a Poisson random variable with mean 5 . What's the likelihood that there will be at least three calls tonight?

8A-7 Tabitha is Latexing her thesis, proof-reading as she word-processes. When printed, about 20% of the pages turn out to be error-free. What is the likelihood that
a) a single page has at most one error?
b) three pages have a total of at most three errors?

8A-8 Suppose a calculus textbook has a total of 600 misprints in its 950 pages. What is the probability that
a) a chapter containing 10 pages has no misprints?
b) a chapter 5 pages long has at least one misprint?

8B. Continuous random variables.

8B-1 Let X be an exponential random variable with parameter $m=2$.
a) Calculate the expectation of X directly from its definition.
b) Calculate $P(1 \leq X \leq 3)$.

8B-2 The average time between sales at the Chinese pastry booth in the lobby of Building 10 is $4 / 5$ minute (they wish). If we assume the time is an exponential random variable, what is the probability that the time between successive sales is
a) greater than 2 minutes?
b) less than 4 minutes?

8B-3 Say that on the average, a baby is born somewhere in the U.S. every 10 seconds (we're assuming it's not 9 months after a massive nighttime power outage). What's the probability of a time gap between two successive births lasting between one and two minutes?

8B-4 Assume the mean length of time between auto accidents on Southeast Expressway is 10 hours. Estimate the probability of no accidents for 24 hours.

8B-5 My city-tire bicycle seems to get a flat on the Charles River bike path on the average every 100 days. For what length of time t_{0} will the probability be 90% that I won't get a flat during any time interval of that length?

8B-6 If X is an exponential random variable with parameter m, what is the probability that X exceeds its mean?

8B-7* In Example 2.1,
a) verify the formulas given for the density function and $P(a \leq x \leq b)$;
b) find the distribution function.

3. Standard deviation

8C-1* Find the standard deviation of X if:
a) X is the outcome of tossing a fair die
b) X is the uniform continuous random variable with range $\left[x_{1}, x_{2}\right]$.

8C-2* In Theorem 3.1, prove: (a) (17) (b) (18)
8C-3* Prove the equality of the two integral formulas in (16) for the variance of a continuous random variable.

4. Normal random variables

8D-1 Let Z be the standard normal random variable. Using the table for the values of the associated distribution function $\Phi(Z)$, extended by (23) and (24), calculate the value of:
a) $\mathrm{P}(1.5<Z<2.5)$
b) $\mathrm{P}(Z \leq-1)$
c) $\mathrm{P}(-1<Z<1)$
d) $\mathrm{P}(-1<Z<2.5)$

8D-2 Assume the lifetime in hours of a flashlight battery is a normal random variable X with mean 120 and standard deviation 36 . Find the probability that it lasts between 85 and 135 hours. How many batteries in a sample of 160 would you expect to last that long, on the average?

8D-3 Suppose the grades on an .01 A test have a normal distribution with mean 70 and standard deviation 10 . If 300 students take the test and passing is set at 55 , how many fail? A mean professor decides that "keeping up the standards" requires that 10% of the students fail. What will she announce as the passing grade?

8D-4 For each of the following normal random variables, give an interval in which the variable lies with probability 95%.
a) Lifetime in hours of a flashlight battery if $m=120, \sigma=36$;
b) grade on an exam for which $m=70, \sigma=10$;
c) annual snowfall in inches, if the mean is $46^{\prime \prime}$ and the standard deviation $4^{\prime \prime}$.

8D-5* Prove in Theorem 4.1 that $\sigma(Z)=1$ for the standard normal random variable Z.
8D-6* Prove the first implication in (22) by making the change of variable.
8D-7* Prove the total area under the normal density function (28) is 1 by making a change of variable in the integral; you can use the results in (20).

8E. Central Limit Theorem

8E-1 Suppose the average luggage weight for an airline passenger is 38 lbs . with a standard deviation of 8 lbs . What is the probability that the luggage for 80 passengers will weigh over 3200 pounds?

8E-2 In an R/O week contest, one hundred freshmen independently estimate the height in meters of a picket fence. Assume that the standard deviation for the individual guesses is less than 1 dm (. 1 meter). Give a lower bound on the probability that the average of their guesses is off by less than 1 cm .

8E-3 A national poll is to estimate the percentage of Americans who favor a draft over a volunteer military . Copy and complete the table below so that if n people are polled at random, we can say with approximately 95% confidence that our error is less than e percentage points.

$\mathrm{n}:$	50	100	4	625		10,000
$\mathrm{e}:$		5	3	2		

8E-4 The Today Show announces that in a poll of 900 randomly chosen Americans, 52% favored college tuition tax credits. In what range can you say with approximately 95% confidence that the actual percentage lies?

8E-5 To prove that a coin is unfair, a judge tosses it 2,000 times. How many heads would he need to get to prove with 95% confidence that the coin is unfair?

8E-6 One hundred reservations have been confirmed for the 98-seat flight from Boston to Bangor. If generally 3% of the confirmed passengers do not show up, what is the probability that someone will be bumped from the flight?

8E-7 A poll of 10,000 Bostonians a week before a gubernatorial election gives the incumbent 52% of the vote. In what range can you put his support with approximately 95% confidence?

Answers

$\mathbf{8 A - 1}$ a) $1 / 3$
b) $1 / 6$
$\mathbf{8 A - 2}$ a) $1 / 3$
b) $7 / 36$
$\mathbf{8 A - 3}$ a) $11 / 24$ b) $13 / 24$
$8 \mathrm{~A}-4$ a) $1 / 3$ b) $2 / 3$ c) $\mathrm{P}(\mathrm{X}$ is 2 or 3$)=6 / 16 ; \mathrm{P}(\mathrm{X}$ is neither 1 nor 4$)=7 / 16$
8A-5 $e^{-10}\left(1+10+10^{2} / 2!+\ldots+10^{5} / 5!\right)=.067$
8A-6 $e^{-5}\left(1+5+5^{2} / 2!\right)=.125=P(X \leq 2)$. So $P(X \geq 3)=.875$
8A-7 The mean is .2 , so 1.61 errors/page
a) $e^{-1.61}(1+1.61)=.522=\mathrm{P}$ (at most 1 error/page $)$
b) average no. errors in 3 pages is $4.83 ; \mathrm{P}(3$ or less $)=.29$
$\mathbf{8 A - 8}$ a) . 0018 b) .957

8B-1 $E(X)=2 ; \quad P(1<X<3)=e^{-1 / 2}-e^{-3 / 2}=38 \%$.
8B-2 $e^{-5 / 2} \approx 8 \% ; \quad 1-e^{-5} \approx 99 \%$.
8B-3 $e^{-6}-e^{-12} \approx 0.2 \%$.
$8 \mathrm{~B}-4 \quad e^{-2.4} \approx 9 \%$.
8B-5 $e^{-t_{0} / 100}=.9 \Rightarrow t_{0}=-100 \ln 9 \approx 10.5$ days.
8B-6 $e^{-1} \approx 37 \%$.

8D-1 $.9938-.9332=.0608 \quad 1-.8413=.1587$;

$$
.8413-(1-.8413)=.6826 ; \quad .9938-(1-.8413)=.8351
$$

8D-2 $P(85<X<135)=P(-35 / 36<Z<15 / 36)=.6628-.1660=.4968$.
Ans: about 50, about 80 .
8D-3 $P(X \leq 55)=P(Z \leq-15 / 10)=.0668$. About 20 fail. $10 \% \approx P(Z \geq 1.3)=P(Z \leq-1.3)=P(X<57)$.
8D-4 48 to 192 hrs.; 50 to $90 ; 38$ to 54 inches

8E-1 $\quad \bar{\sigma}=8 / \sqrt{80}=2 / \sqrt{5}, P(\bar{X} \geq 40)=P(Z \geq \sqrt{5} \approx 1-P(Z \leq 2.24)=1-.987=.013$, so about 1.3%.
8E-2 $\bar{\sigma} \leq .1 / \sqrt{100}=.01 ; P(|\bar{X}-\bar{\sigma}| \leq .01)=P(|Z| \leq 1)=2 P(0 \leq Z \leq 1)=2(P(Z \leq$ 1) $-1 / 2)=2(.84-.50)=.68$; about 68%

8E-3 $e=100 / \sqrt{n} \approx 14,10,1 ; \quad n=10,000 / e^{2} \approx 400,1111$.
8E-4 about 49\%-55\%
8E-5 Less than about 955 or more than about 1045 heads would show coin unfair.
8E-6 $4 e^{-3} \approx 20 \%$
8E-7 $51 \%-53 \%$

