7. Infinite Series

7A. Basic Definitions

7A-1 Do the following series converge or diverge? Give reason. If the series converges, find its sum.

a)
$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots + \frac{1}{4^n} + \dots$$

b) $1 - 1 + 1 - 1 + \dots + (-1)^n + \dots$
c) $1 + \frac{1}{2} + \frac{2}{3} + \dots + \frac{n}{n+1} + \dots$
d) $\ln 2 + \ln \sqrt{2} + \ln \sqrt[3]{2} + \ln \sqrt{2} + \dots$
e) $\sum_{1}^{\infty} \frac{2^{n-1}}{3^n}$
f) $\sum_{0}^{\infty} (-1)^n \frac{1}{3^n}$

7A-2 Find the rational number represented by the infinite decimal .21111....

7A-3 For which x does the series $\sum_{0}^{\infty} \left(\frac{x}{2}\right)^{n}$ converge? For these values, find its sum f(x).

7A-4 Find the sum of these series by first finding the partial sum S_n .

a)
$$\sum_{1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

b)
$$\sum_{1}^{\infty} \frac{1}{n(n+2)}.$$
 (Hint: $\frac{1}{n(n+2)} = \frac{a}{n} + \frac{b}{n+2}$ for suitable a, b).

7A-5 A ball is dropped from height h; each time it lands, it bounces back 2/3 of the height from which it previously fell. What is the total distance (up and down) the ball travels?

7B: Convergence Tests

7B-1 Using the integral test, tell whether the following series converge or diverge; show work or reasoning.

a)
$$\sum_{0}^{\infty} \frac{n}{n^2 + 4}$$
 b) $\sum_{0}^{\infty} \frac{1}{n^2 + 1}$ c) $\sum_{0}^{\infty} \frac{1}{\sqrt{n + 1}}$
d) $\sum_{1}^{\infty} \frac{\ln n}{n}$ e) $\sum_{2}^{\infty} \frac{1}{(\ln n)^p \cdot n}$ f) $\sum_{1}^{\infty} \frac{1}{n^p}$

(In the last two, the answer depends on the value of the parameter p.)

7B-2 Using the limit comparison test, tell whether each series converges or diverges; show work or reasoning. (For some of them, simple comparison works.)

a)
$$\sum_{1}^{\infty} \frac{1}{n^2 + 3n}$$
 b)
$$\sum_{1}^{\infty} \frac{1}{n + \sqrt{n}}$$
 c)
$$\sum_{1}^{\infty} \frac{1}{\sqrt{n^2 + n}}$$

d)
$$\sum_{1}^{\infty} \sin\left(\frac{1}{n^2}\right)$$
 e)
$$\sum_{1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$
 f)
$$\sum_{1}^{\infty} \frac{\ln n}{n}$$

g)
$$\sum_{2}^{\infty} \frac{n^2}{n^4 - 1}$$
 h)
$$\sum_{1}^{\infty} \frac{n^3}{4n^4 + n^2}$$

E. 1801 EXERCISES

7B-3 Prove that if $a_n > 0$ and $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} \sin a_n$ also converges.

7B-4 Using the ratio test, or otherwise, determine whether or not each of these series is absolutely convergent. (Note that 0! = 1.)

a)
$$\sum_{0}^{\infty} \frac{n}{2^{n}}$$
 b) $\sum_{0}^{\infty} \frac{2^{n}}{n!}$ c) $\sum_{1}^{\infty} \frac{2^{n}}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$
d) $\sum_{0}^{\infty} \frac{(n!)^{2}}{(2n)!}$ e) $\sum_{1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ f) $\sum_{1}^{\infty} \frac{n!}{n^{n}}$; use $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = e$
g) $\sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ h) $\sum_{0}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2} + 1}}$ i) $\sum_{0}^{\infty} \frac{n}{n+1}$

7B-5 For those series in **7B-4** which are *not* absolutely convergent, tell whether they are conditionally convergent or divergent.

7B-6 By using the ratio test, determine the radius of convergence of each of the following power series.

a)
$$\sum_{1}^{\infty} \frac{x^{n}}{n}$$
 b) $\sum_{1}^{\infty} \frac{2^{n}x^{n}}{n^{2}}$ c) $\sum_{0}^{\infty} n!x^{n}$
d) $\sum_{0}^{\infty} \frac{(-1)^{n}x^{2n}}{3^{n}}$ e) $\sum_{0}^{\infty} \frac{(-1)^{n}x^{2n+1}}{2^{n}\sqrt{n}}$ f) $\sum_{0}^{\infty} \frac{(2n)!x^{2n}}{(n!)^{2}}$
g) $\sum_{2}^{\infty} \frac{x^{n}}{\ln n}$ h) $\sum_{0}^{\infty} \frac{2^{2n}x^{n}}{n!}$

7C: Taylor Approximations and Power Series

7C-1 Using the general formula for the coefficients a_n , find the Taylor series at 0 for the following functions; do the work systematically, calculating in order the $f^{(n)}, f^{(n)}(0)$, and then the a_n .

a) $\cos x$ b) $\ln(1+x)$ c) $\sqrt{1+x}$

7C-2 Calculate sin 1 using the Taylor series up to the term in x^3 . Estimate the accuracy using the remainder term. (The calculator value is .84147.) Use the remainder term $R_6(x)$, not $R_5(x)$; why?

7C-3 Using the remainder term, tell for what value of n in the approximation

$$e^x \approx 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}$$

the resulting calculation will give e to 3 decimal places (by convention, this means: within .0005).

7C-4 By using the remainder term, tell whether $\cos x \approx 1 - \frac{x^2}{2!}$ will be valid to within .001 over the interval |x| < .5.

7C-5 Calculate $\int_0^{.5} e^{-x^2} dx$, using the approximation for e^{-x^2} up to the term in x^4 . Estimate the error, using the correct remainder term (cf. **7B-3**), and tell whether the answer will be good to 3 decimal places.

7. INFINITE SERIES

7D: General Power Series

7D-1 Find the power series around x = 0 for each of the following functions by using known Taylor series: use substitution, addition, differentiation, integration, or anything else you can think of:

a)
$$e^{-2x}$$

b) $\cos \sqrt{x}$, $x \ge 0$
c) $\sin^2 x$ (use an identity)
d) $\frac{1}{(1+x)^2}$
e) $\tan^{-1} x$ (differentiate)
f) $\ln(1+x)$
g) $\cosh x = \frac{e^x + e^{-x}}{2}$

7D-2 By using operations on power series (substitution, addition, integration, differentiation, multiplication), find the power series for the following functions, and determine the radius of convergence. (Where indicated, give just the first 2 or 3 non-zero terms.)

a)
$$\frac{1}{x+9}$$
 b) e^{-x^2} c) $e^x \cos x$ (3 terms)
d) $\int_0^x \frac{\sin t}{t} dt$ e) $\operatorname{erf} x = \int_0^x e^{-t^2/2} dt$ f) $\frac{1}{x^3-1}$
g) $\cos^2 x$ (differentiate; then use a trigonometric identity)
h) $\frac{\sin x}{1-x}$ (3 terms); do it two ways: multiplication, and dividing $\sin x$ series by 1
i) $\tan x$ (2 terms); do it two ways: Taylor series, and division of power series

-x

7D-3 Find the following limits by using linear, quadratic, or cubic approximation (i.e. by using the first few terms of the Taylor series), *not* by using L'Hospital's rule.

a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

b) $\lim_{x \to 0} \frac{x - \sin x}{x^3}$
c) $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1 - x/2}{\sin^2 x}$
d) $\lim_{u \to 0} \frac{\cos u - 1}{\ln(1 + u) - u}$