7. Infinite Series

7A. Basic Definitions

7A-1 Do the following series converge or diverge? Give reason. If the series converges, find its sum.
a) $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots+\frac{1}{4^{n}}+\ldots$
b) $1-1+1-1+\ldots+(-1)^{n}+\ldots$
c) $1+\frac{1}{2}+\frac{2}{3}+\ldots+\frac{n}{n+1}+\ldots$
d) $\ln 2+\ln \sqrt{2}+\ln \sqrt[3]{2}+\ln \sqrt[4]{2}+\ldots$
e) $\sum_{1}^{\infty} \frac{2^{n-1}}{3^{n}}$
f) $\sum_{0}^{\infty}(-1)^{n} \frac{1}{3^{n}}$

7A-2 Find the rational number represented by the infinite decimal $.21111 \ldots$.
7A-3 For which x does the series $\sum_{0}^{\infty}\left(\frac{x}{2}\right)^{n}$ converge? For these values, find its sum $f(x)$.
7A-4 Find the sum of these series by first finding the partial sum S_{n}.
a) $\sum_{1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$
b) $\sum_{1}^{\infty} \frac{1}{n(n+2)} . \quad\left(\right.$ Hint: $\frac{1}{n(n+2)}=\frac{a}{n}+\frac{b}{n+2}$ for suitable $\left.a, b\right)$.

7A-5 A ball is dropped from height h; each time it lands, it bounces back $2 / 3$ of the height from which it previously fell. What is the total distance (up and down) the ball travels?

7B: Convergence Tests

7B-1 Using the integral test, tell whether the following series converge or diverge; show work or reasoning.
a) $\sum_{0}^{\infty} \frac{n}{n^{2}+4}$
b) $\sum_{0}^{\infty} \frac{1}{n^{2}+1}$
c) $\sum_{0}^{\infty} \frac{1}{\sqrt{n+1}}$
d) $\sum_{1}^{\infty} \frac{\ln n}{n}$
e) $\sum_{2}^{\infty} \frac{1}{(\ln n)^{p} \cdot n}$
f) $\sum_{1}^{\infty} \frac{1}{n^{p}}$
(In the last two, the answer depends on the value of the parameter p.)
7B-2 Using the limit comparison test, tell whether each series converges or diverges; show work or reasoning. (For some of them, simple comparison works.)
a) $\sum_{1}^{\infty} \frac{1}{n^{2}+3 n}$
b) $\sum_{1}^{\infty} \frac{1}{n+\sqrt{n}}$
c) $\sum_{1}^{\infty} \frac{1}{\sqrt{n^{2}+n}}$
d) $\sum_{1}^{\infty} \sin \left(\frac{1}{n^{2}}\right)$
e) $\sum_{1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}$
f) $\sum_{1}^{\infty} \frac{\ln n}{n}$
g) $\sum_{2}^{\infty} \frac{n^{2}}{n^{4}-1}$
h) $\sum_{1}^{\infty} \frac{n^{3}}{4 n^{4}+n^{2}}$

7B-3 Prove that if $a_{n}>0$ and $\sum_{0}^{\infty} a_{n}$ converges, then $\sum_{0}^{\infty} \sin a_{n}$ also converges.
7B-4 Using the ratio test, or otherwise, determine whether or not each of these series is absolutely convergent. (Note that $0!=1$.)
a) $\sum_{0}^{\infty} \frac{n}{2^{n}}$
b) $\sum_{0}^{\infty} \frac{2^{n}}{n!}$
c) $\sum_{1}^{\infty} \frac{2^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$
d) $\sum_{0}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
e) $\sum_{1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
f) $\sum_{1}^{\infty} \frac{n!}{n^{n}}$; use $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
g) $\sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
h) $\sum_{0}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}$
i) $\sum_{0}^{\infty} \frac{n}{n+1}$

7B-5 For those series in 7B-4 which are not absolutely convergent, tell whether they are conditionally convergent or divergent.
7B-6 By using the ratio test, determine the radius of convergence of each of the following power series.
a) $\sum_{1}^{\infty} \frac{x^{n}}{n}$
b) $\sum_{1}^{\infty} \frac{2^{n} x^{n}}{n^{2}}$
c) $\sum_{0}^{\infty} n!x^{n}$
d) $\sum_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{3^{n}}$
е) $\sum_{0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2^{n} \sqrt{n}}$
f) $\sum_{0}^{\infty} \frac{(2 n)!x^{2 n}}{(n!)^{2}}$
g) $\sum_{2}^{\infty} \frac{x^{n}}{\ln n}$
h) $\sum_{0}^{\infty} \frac{2^{2 n} x^{n}}{n!}$

7C: Taylor Approximations and Power Series

7C-1 Using the general formula for the coefficients a_{n}, find the Taylor series at 0 for the following functions; do the work systematically, calculating in order the $f^{(n)}, f^{(n)}(0)$, and then the a_{n}.
a) $\cos x$
b) $\ln (1+x)$
c) $\sqrt{1+x}$
$\mathbf{7 C - 2}$ Calculate $\sin 1$ using the Taylor series up to the term in x^{3}. Estimate the accuracy using the remainder term. (The calculator value is .84147.) Use the remainder term $R_{6}(x)$, not $R_{5}(x)$; why?
7C-3 Using the remainder term, tell for what value of n in the approximation

$$
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}
$$

the resulting calculation will give e to 3 decimal places (by convention, this means: within .0005).
7C-4 By using the remainder term, tell whether $\cos x \approx 1-\frac{x^{2}}{2!}$ will be valid to within .001 over the interval $|x|<.5$.
7C-5 Calculate $\int_{0}^{.5} e^{-x^{2}} d x$, using the approximation for $e^{-x^{2}}$ up to the term in x^{4}. Estimate the error, using the correct remainder term (cf. 7B-3), and tell whether the answer will be good to 3 decimal places.

7D: General Power Series

7D-1 Find the power series around $x=0$ for each of the following functions by using known Taylor series: use substitution, addition, differentiation, integration, or anything else you can think of:
a) $e^{-2 x}$
b) $\cos \sqrt{x}, x \geq 0$
c) $\sin ^{2} x$ (use an identity)
d) $\frac{1}{(1+x)^{2}}$
e) $\tan ^{-1} x$ (differentiate)
f) $\ln (1+x)$
g) $\cosh x=\frac{e^{x}+e^{-x}}{2}$

7D-2 By using operations on power series (substitution, addition, integration, differentiation, multiplication), find the power series for the following functions, and determine the radius of convergence. (Where indicated, give just the first 2 or 3 non-zero terms.)
a) $\frac{1}{x+9}$
b) $e^{-x^{2}}$
c) $e^{x} \cos x(3$ terms $)$
d) $\int_{0}^{x} \frac{\sin t}{t} d t$
e) $\operatorname{erf} x=\int_{0}^{x} e^{-t^{2} / 2} d t$
f) $\frac{1}{x^{3}-1}$
g) $\cos ^{2} x$ (differentiate; then use a trigonometric identity)
h) $\frac{\sin x}{1-x}$ (3 terms); do it two ways: multiplication, and dividing $\sin x$ series by $1-x$
i) $\tan x$ (2 terms); do it two ways: Taylor series, and division of power series

7D-3 Find the following limits by using linear, quadratic, or cubic approximation (i.e. by using the first few terms of the Taylor series), not by using L'Hospital's rule.
a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
b) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$
c) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{\sin ^{2} x}$
d) $\lim _{u \rightarrow 0} \frac{\cos u-1}{\ln (1+u)-u}$

