AV. AVERAGE VALUE

What was the average temperature on July 4 in Boston?
The temperature is a continuous function $f(x)$, whose graph over the 24 -hour period might look as shown. How should we define the average value of such a function over the time interval $[0,24]$ - measuring time x in hours, with $x=0$ at 12:00AM ?

We could observe the temperature in the middle of every hour, that is, at the times $x_{1}=.5, x_{2}=1.5, \ldots, x_{24}=23.5$, then average these 24 observations, getting

$$
\frac{1}{24} \sum_{i=1}^{24} f\left(x_{i}\right)
$$

To get a more accurate answer, we could average measurements made more frequently, say every ten minutes.

For a general interval $[a, b]$ and function $f(x)$, the analogous procedure would be to divide up the interval into n equal parts, each of length

$$
\begin{equation*}
\Delta x=\frac{b-a}{n} \tag{1}
\end{equation*}
$$

and average the values of the function $f(x)$ at a succession of points x_{i}, where x_{i} lies in the i-th interval. Then we ought to have

$$
\begin{equation*}
\text { average of } f(x) \text { over }[a, b] \approx \frac{1}{n} \sum_{1}^{n} f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

We can relate the sum on the right to a definite integral: using (1), (2) becomes

$$
\begin{equation*}
\text { average of } f(x) \text { over }[a, b] \approx \frac{1}{b-a} \sum_{1}^{n} f\left(x_{i}\right) \Delta x \tag{3}
\end{equation*}
$$

As $n \rightarrow \infty$, the sum on the right-hand side of (3) approaches the definite integral of $f(x)$ over $[a, b]$, and we therefore define the average value of the function $f(x)$ on $[a, b]$ by

$$
\begin{equation*}
A=\text { average of } f(x) \text { over }[a, b]=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{4}
\end{equation*}
$$

Geometrically, the average value A can be thought of as the height of that constant function A which has the same area over $[a, b]$ as $f(x)$ does. This is so since (4) shows that

$$
A \cdot(b-a)=\int_{a}^{b} f(x) d x
$$

Example 1. In alternating current, voltage is represented by a sine wave with a frequency of 60 cycles/second, and a peak of 120 volts. What is the average voltage?

Solution. The voltage function has frequency $\frac{2 \pi}{\text { period }}=\frac{2 \pi}{1 / 60}=120 \pi$, and amplitude 120 , so it is given by $V(t)=120 \sin (120 \pi t)$. Thus by (4),

$$
\text { average } \left.V(t)=120 \int_{0}^{1 / 120} V(t) d t=-\frac{120}{\pi} \cos (120 \pi t)\right]_{0}^{1 / 120}=\frac{2}{\pi} \cdot 120
$$

(We integrate over $[0,1 / 120]$ rather than $[0,1 / 60]$ since we don't want zero as the average.)

Example 2.

a) A point is chosen at random on the x-axis between -1 and 1 ; call it P. What is the average length of the vertical chord to the unit circle passing through P ?

b) Same question, but now the point P is chosen at random on the circumference.

Solution. a) If P is at x, the chord has length $2 \sqrt{1-x^{2}}$, so we get
average of $2 \sqrt{1-x^{2}}$ over $[-1,1]=\frac{1}{2} \int_{-1}^{1} 2 \sqrt{1-x^{2}} d x=$ area of semicircle $=\frac{\pi}{2} \approx 1.6$.
b) By symmetry, we can suppose P is on the upper semicircle. If P is at the angle θ, the chord has length $2 \sin \theta$, so this time we get

$$
\text { average of } \left.2 \sin \theta \text { over }[0, \pi]=\frac{1}{\pi} \int_{0}^{\pi} 2 \sin \theta d \theta=-\frac{2}{\pi} \cos \theta\right]_{0}^{\pi}=\frac{4}{\pi} \approx 1.3 \text {. }
$$

(Intuitively, can you see why the average in part (b) should be less than the average in part (a) - could you have predicted this would be so?)

Exercises: Section 4D

