I. Limits in Iterated Integrals

For most students, the trickiest part of evaluating multiple integrals by iteration is to
put in the limits of integration. Fortunately, a fairly uniform procedure is available which
works in any coordinate system. You must always begin by sketching the region; in what
follows we’ll assume you’ve done this.

. . . 2yZq
1. Double integrals in rectangular coordinates. Xy
Let’s illustrate this procedure on the first case that’s usually
taken up: double integrals in rectangular coordinates. Suppose we xty=1
want to evaluate over the region R pictured the integral \
// f(z,y)dyde R = region between 22 +y> =1 and z+y=1;
R

we are integrating first with respect to y. Then to put in the limits,

1. Hold z fixed, and let y increase (since we are integrating with respect to y).
As the point (z,y) moves, it traces out a vertical line.

2. Integrate from the y-value where this vertical line enters the region R, to
the y-value where it leaves R.

3. Then let x increase, integrating from the lowest x-value for which the vertical
line intersects R, to the highest such z-value.

Carrying out this program for the region R pictured, the vertical line enters R where
y =1 — =z, and leaves where y = v/1 — 2.
y=/1-x2

The vertical lines which intersect R are those between x = 0 and
x = 1. Thus we get for the limits:

//Rﬂw,y)dydx - /01/1j_7f<x7y)dydm-

To calculate the double integral, integrating in the reverse order [/’ r (@, y) dx dy,

1. Hold y fixed, let x increase (since we are integrating first with respect to x).
This traces out a horizontal line.

2. Integrate from the x-value where the horizontal line enters R to the x-value
where it leaves.

3. Choose the y-limits to include all of the horizontal lines which intersect R.

Following this prescription with our integral we get:

x71-y2
=

//Rf(a:,wdxdy - Al/li@f(x,y)dxdy.
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2 18.02 NOTES

2. Double integrals in polar coordinates

The same procedure for putting in limits works for these also. Suppose we want to
evaluate over the same region R as before

//Rdrde.

(The integrand, including the r that usually goes with r drdf, is irrelevant, and therefore
omitted.)
As usual, we integrate first with respect to r. Therefore, we

1. Hold 6 fixed, and let r increase (since we are integrating with respect to ).
As the point moves, it traces out a ray going out from the origin.

2. Integrate from the r-value where the ray enters R to the r-value where it
leaves. This gives the limits on r.

3. Integrate from the lowest value of 8 for which the corresponding ray inter-
sects R to the highest value of 6.

To follow this procedure, we need the equation of the line in polar coordinates. We have

1
=1 — 0 inf =1 = —.
r+y rcost + rsin , or r 050 - snd
This is the r value where the ray enters the region; it leaves where
r = 1. The rays which intersect R lie between § = 0 and 6 = /2.
Thus the double iterated integral in polar coordinates has the limits r=1
/2 1 /
/ / drdo . | r =1/ (cosp + sing)
0 1/(cos 0+sin 0)
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I. LIMITS IN ITERATED INTEGRALS

3. Triple integrals in rectangular and cylindrical coordinates.

You do these the same way, basically. To supply limits for ([}, dzdydz over
the region D, we integrate first with respect to z. Therefore we

1. Hold z and y fixed, and let z increase. This gives us a vertical line.

2. Integrate from the z-value where the vertical line enters the region D to the
z-value where it leaves D.

3. Supply the remaining limits (in either zy-coordinates or polar coordinates)
so that you include all vertical lines which intersect D. This means that you will
be integrating the remaining double integral over the region R in the xy-plane

which D projects onto. z=4x2-y?
For example, if D is the region lying between the two paraboloids

z=2a%+y? z=4—2%—y?

we get by following steps 1 and 2,

d—a?y? /
/// dzdydx = /// dz dA
D R Jax24y?

where R is the projection of D onto the xy-plane. To finish the job, we have to determine
what this projection is. From the picture, what we should determine is the zy-curve over
which the two surfaces intersect. We find this curve by eliminating z from the two equations,
getting

2?4+ y? = 4—22— 42 which implies
> +y? = 2.

Thus the zy-curve bounding R is the circle in the xy-plane with center at the origin and
radius v/2 .

This makes it natural to finish the integral in polar coordinates. We get

2,2 pd—az?—y?
/// dzdydx = / / / dzrdrdf ;
D 0 0 z2+4y2

the limits on z will be replaced by 72 and 4 — 72 when the integration is carried out.
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4. Spherical coordinates.

Once again, we use the same procedure. To calculate the limits for
an iterated integral [[[, dpd¢df over a region D in 3-space, we are
integrating first with respect to p. Therefore we

1. Hold ¢ and @ fixed, and let p increase. This gives us a ray going out from
the origin.

2. Integrate from the p-value where the ray enters D to the p-value where the
ray leaves D. This gives the limits on p.

3. Hold 0 fixed and let ¢ increase. This gives a family of rays, that form a sort
of fan. Integrate over those ¢-values for which the rays intersect the region D.

4. Finally, supply limits on 6 so as to include all of the fans which intersect the
region D.

For example, suppose we start with the circle in the yz-plane of radius 1 and center at
(1,0), rotate it about the z-axis, and take D to be that part of the resulting solid lying in
the first octant.

First of all, we have to determine the equation of the surface formed z p
by the rotated circle. In the yz-plane, the two coordinates p and ¢ are @
indicated. To see the relation between them when P is on the circle, we see 3 )
that also angle OAP = ¢, since both the angle ¢ and O AP are complements o 1 A
of the same angle, AOP. From the right triangle, this shows the relation is M

p = 2sin ¢.

As the circle is rotated around the z-axis, the relationship stays the same, so p = 2sin ¢
is the equation of the whole surface.

To determine the limits of integration, when ¢ and 6 are fixed, the correpsonding ray
enters the region where p = 0 and leaves where p = 2sin ¢.

As ¢ increases, with 6 fixed, it is the rays between ¢ = 0 and ¢ = /2 that intersect D,
since we are only considering the portion of the surface lying in the first octant (and thus
above the zy-plane).

Again, since we only want the part in the first octant, we only use € values from 0 to
/2. So the iterated integral is

/2 pm/2 p2sing
/ / / dpdédo .
0 0 0
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