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  Genome sequencing 
◦  Conventional 

◦  Metagenomics 

◦  Single Cell 

  De Bruijn graphs & SPAdes genome assembler 

  P. gingivalis found in a hospital sink drain 
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  The E. coli genome is ~ 4.6 million nucleotides long. 
Represent it as a (circular) string over the alphabet {A, C, G, T}: 
E. coli K-12 substr. MG1655 
  1-50  AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAA  
 51-100 AAAGAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAAT  
101-150 TAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATA  
151-200 GCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCAT  
 . . .   . . . . . . . . . . . . . . . . . . . . . . . . .  
4639651-4639675  
        AAAAACGCCTTAGTAAGTATTTTTC  

  The human genome is ~ 3 billion nucleotides long, split into 
chromosomes represented as linear strings over {A, C, G, T}. 

  Current technologies read ~ 25 – 10000 consecutive nucleotides. 
We focus on the popular Illumina GAIIx, with 100 nt reads. 
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Fragment many copies of same genome. Lose positional information. 

Find overlapping reads. 
	             ACGTAGAATCGACCATG...	
	...AACATAGTTGACGTAGAATC	

Merge overlapping reads into contigs. 
 ...AACATAGTTGACGTAGAATCGACCATG...	

Sequence reads (25 to 10000 nt) at one or both ends of fragments. 

Contig Contig Contig 
Gap Gap 

Coverage here = 2 



•  Problem: Given a collection of reads (short substrings of the genome 
sequence in the alphabet A, C, G, T), 
reconstruct the genome from which the reads are derived. 

•  Challenges: 
◦  Repeats in the genome 
…ACCCAGTTGACTGGGATCCTTTTTAAAGACTGGGATTTTAACGCGTAAG…  
    CAGTTGACTG  
          ACTGGGATCC	 	  	        Sample reads 
                                                                   GACTGGGATT	
◦  Sequencing errors (vary by platform and protocol), including:  

                  CCTTTTTATAGACTG  Substitution  
                  CCTTTTTA-AGACTGG Deletion  
                  CCTTTCTTAAAGACT  Insertion 
                  CCTTTTTTTTAAAGA  Homopolymer 
                  CCTTTTTTCGCGTAA  Chimeric read 
◦  Size of the data, e.g. 30 million reads of length 100 nt in a 7 GB file. 
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gene 1           gene 2                     gene 3 

  Traditional microbial genome sequencing requires isolating a pure strain and 
reproducing it in a ‘culture’ under controlled laboratory conditions. But 
>99% of bacteria cannot be cultured. 

  Metagenomics enables studies of organisms not easily cultured in a 
laboratory.  It uses collective sequencing of non-identical cells. 

  Until recently, metagenomics was the only option for studies of microbial 
communities. However, metagenomics provides information about only a 
few genes (across many species), and/or information about the dominant 
species.  
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1000s of genes sequenced from a single cell  

  Traditional microbial genome sequencing requires isolating a pure strain and 
reproducing it in a ‘culture’ under controlled laboratory conditions. But 
>99% of bacteria cannot be cultured. 

  Metagenomics enables studies of organisms not easily cultured in a 
laboratory.  It uses collective sequencing of non-identical cells. 

  Single Cell Bacterial Genomics: Complementing gene-centric 
metagenomics data with whole-genome assembly of uncultivated 
organisms.  
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Genomic DNA 

F.B. Dean, J.R. Nelson, T.L. Giesler, R.S. Lasken (2001). Genome Res. 11:1095-9 
F.B. Dean, S. Hosono, L. Fang, et al. (2002). PNAS 99:5261-6 

  Roger Lasken’s lab developed Multiple Displacement Amplification (MDA). 
  More effective than PCR for amplification of a single cell. 
  Commercially available kits: 

      TempliPhi and GenomiPhi (GE Healthcare)     and     REPLI-g (Qiagen). 
  REPLI-g: fragments ~ 2 – 100 kb; usually > 10 kb on average. 
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Genomic DNA 

1st generation copies 
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Genomic DNA 

1st generation copies 

2nd generation copies 
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Genomic DNA 

1st generation copies 

2nd generation copies 

3rd generation copies 
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Genomic DNA 

1st generation copies 

2nd generation copies 

3rd generation copies 

4th generation copies 
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  Lander-Waterman model predicts ~15x coverage needed for complete E. coli assembly. 

  Assumes uniform coverage; error-free reads; and no repeats in genome. 

  For our single cell E. coli assembly, 600x average coverage still has some gaps since 
there are positions with no reads. 
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A cutoff threshold will eliminate about 25% of valid data in the single 
cell case, whereas it eliminates noise in the normal multicell case.  
Chitsaz, et al., Nat. Biotechnol. (2011). 
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ABCDEFGHIJCDEFGKL	

Vertices:  k-mers from the sequence 
Edges:     (k+1)-mers from the sequence 
k=3:         4-mer wxyz   gives   wxy → xyz 
Genome: Eulerian path through graph 
                  (using edge multiplicities) 

ABC	 BCD	 CDE	 DEF	 EFG	 FGK	 GKL	

JCD	

IJC	

HIJ	
GHI	

FGH	

Genome: 

P. Pevzner, J Biomol Struct Dyn (1989) 7:63–73  
R. Idury, M. Waterman, J Comput Biol (1995) 2:291–306 
P. Pevzner, H. Tang, M. Waterman, PNAS (2001) 98(17):9748-53 

ABCD	 (twice) (twice) 
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ABCDEFG	
   DEFGHIJ	
      GHIJCDE	
        IJCDEFG	
          CDEFGKL	

ABC	 BCD	 CDE	 DEF	 EFG	 FGK	 GKL	

JCD	

IJC	

HIJ	
GHI	

FGH	

Reads (but order would be 
random in real data): 

ABCD	

Vertices:  k-mers from the reads 
Edges:     (k+1)-mers from the reads 
k=3:         4-mer wxyz   gives   wxy → xyz 
Reads:     short walks through graph (red) 
Genome: long walk through graph 
We lose exact repeat multiplicities 
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ABCDE	 CDEFG	 EFGKL	

EFGHIJCDE	
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Genome length 4.6 million bases 
Reads Illumina GA IIx platform, paired end sequencing 

100 bases/read 
Reads are in pairs spanning ~ 250 bases (varies) 
~ 30 million reads (15 million read pairs) 
~ 600x coverage 
~ 7 GB FASTQ file 

De Bruin Graph 
parameters 

Can set k between ~ 25 – 70.  We used 
     55-mer vertices 
     56-mer edges 

Graph size Initially: ~ 200 million vertices (55-mers) 
Output:  ~ 200 – 2000 contigs (varies by assembler) 
              ~ 4.6 million bases 
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Postprocessing

Mate pairs
and repeats

De Bruijn graph
processing

Error correction
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  De Bruijn graph assembler. 
  Adapted to handle conventional and single cell datasets. 
  Instead of global thresholds, uses local coverage, topology, and lengths to decide how to 

process the assembly graph. 
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Bulge from error in middle of read 

Tip from error near start/end of read 

Chimeric connection joining two 
distant parts of genome 

TCGGTGAAAGAGCTTT 
 CGCTGAAAGAGCTTTG 
  GGTGAAAGAGCTTTGA 
   GTGAAAGAGCTTTGAT 

TCGGTGAAAGAGCTTT 
 CGGTGAACGAGCTTTG 
  GGTGAAAGAGCTTTGA 
   GTGAAAGAGCTTTGAT 

TCGGTGAAAGAGCTTT 
 CGGTGAAAGAGCTTTG 
  ACATCGTAAGCTTTGC 
     TCGTAGTAGCCGATTC 
      CGTAGTAGCCGATTCG 
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Nurk et al (2013), Journal of Computational Biology 
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  To clean up these problems, we consider local coverage, topology, and 
lengths. 

  Smart scheduling: For bulges and chimeric connections, SPAdes 
examines all edges in order from lowest to highest coverage. 
For tips, we go in order by length. 
This is inspired by, but improves upon, E+V-SC (Chitsaz et al, 2011), 
which used a gradually increasing threshold to discard low-coverage k-
mers. 

  Efficient bookkeeping allows us to map all reads to the final contigs 
using the actual logic of graph simplification, and produce an accurate 
SAM file placing reads onto contigs, instead of relying on external 
alignment tools to guess how the reads were mapped. 
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  These configurations also arise from repeats. 
In other contexts, they can arise from diploid variations and polymorphic 
samples. 

  Most de Bruijn assemblers use a fixed global coverage cutoff to eliminate 
many erroneous edges, and then use heuristics for further simplifications. This 
doesn’t work well for single cell MDA. 

  Error correcting reads before assembly reduces the number of erroneous edges. 
A global vs. local coverage cutoff issue also applies to the error correction 
stage.  BayesHammer (in SPAdes) does error correction for single-cell data. 

  Velvet-SC (Chitsaz et al, 2011) and SPAdes (Bankevich et al, 2012), both from 
Pevzner’s group, and recently IDBA-UD (Peng et al, 2012), make better use of 
local coverage and variable thresholds in performing simplifications. 
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Correctly assembled. 
Blue: similar boundaries in at 
least half of the assemblers. 

Misassembled. 
Orange: similar boundaries in at 
least half of the assemblers. 
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Genome Research (2013) 23: 867-877 



  Single-cell genomics is becoming an accepted method to capture novel 
genomes, particularly in marine and soil environments, and in hosts 
(human, termite gut, and others). 

Binga et al (2008), The ISME Journal, 2:233-241 
Chitsaz et al (2011), Nature Biotechnology, 29:915-921 
Stepanauskas (2012), Current Opinion in Microbiology, 15:613-620 
Lasken (2012), Nature Reviews Microbiology, 10:631-640 
Blainey (2013), FEMS Microbiol Rev, 37:407-427 

  Here we show for the first time that it also enables comparative analysis 
of strain variations in a pathogen captured in a hospital biofilm. 

  Single-cell assemblies enable sequence-level comparisons previously 
only possible with cultivated organisms, including gene annotations, and 
variations in genes, repeats, and virulence factors. 
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Cycle  
sequencing  

MDA    
109-fold DNA 
amplification 

Flow sort single cells  
384-well format 

16S 
PCR 

Automated single cell 
genomics pipeline 

Classification   

Whole Genome 
Sequencing  

and Assembly 

Disrupt Biofilm  
Into Single Cells 

  Sink drain biofilm samples collected from a public 
restroom at UCSD Medical Center emergency room. 

  Analyzed with a new robotic platform developed by 
Lasken & McLean labs at JCVI. 

  Platform flow sorts single cells from a sample onto 
384 well plates, amplifies them via MDA, and 
classifies them based on 16S typing. 

  Throughput: 5000 wells/week from sort to 16S data. 
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16S rRNA classifications in 736 sorted wells 
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  Common MDA contaminant sequences 
were removed, and those sequences within 
no template control plates. 

  416 wells had single events. 
  25 different genera found. 
  3 wells had P. gingivalis. 

(McLean et al (2013), Genome Research) 
  We also sequenced bacteria from TM6, an 

uncultivated phylum 
(McLean et al (2013), PNAS).  
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Porphyromonas 

unclassified_Bacteria (TM6) 



 Shared 
Shared  
Total Within CDS Missense 

   SNPS 847 791 202 
    DIPS 75 44 31 

CLC Genomics Workbench 

MDA1 SNPs 
MDA2 SNPs 
MDA3 SNPs 
MDA1 DIPs 
MDA2 DIPs 
MDA3 DIPs 
MDA1 reads 

MDA2 reads  

MDA3 reads 

MDA123 reads  

TDC60 Reference 

Repeats 

CDS 

Mobile elts. 

200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000 2,000,000 2,200,000 
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New strain (JCVISC0001) annotated with the JCVI Prokaryotic 
Annotation Pipeline, which is based on Glimmer 

2290 
JCVISC0001 

(from sink drain) 
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One strand, s: ACAATGAG 
Complement: Pair up A↔T and C↔G 
Double-stranded DNA: 

Complement of s: TGTTACTC 
Reverse complement of s: CTCATTGT 

5’ — A C A A T G A G — 3’ 
| | | | | | | | 

3’ — T G T T A C T C — 5’ 



  Reads may come from either strand. 
  Assembler throws in the reverse complement of each read to 

detect this, creating dual vertices and dual edges in graph. 
  Reads ATCC{G,T}TGCC and reverse complements 

          GGCA{C,A}GGAT 
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  We also may use a bidirected graph. 
  Each edge has arrowheads on both ends. 

Each arrowhead may point in or out of the node. 
  Enter node on an   ‘in’ / exit on an ‘out’: use sequence as-is 

Enter node on an ‘out’ / exit on an ‘in’:   use rev. complement 
Not allowed to enter/exit on ‘in’/‘in’ or ‘out’/‘out’ 
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