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g(αβγ) := mult. of Iγ in Iα ⊗ Iβ = dim(Iα ⊗ Iβ ⊗ Iγ)Sm .

These are the Kronecker coefficients.

Longstanding Open Problem

Find a positive combinatorial formula for g(αβγ).

Theorem (Murnaghan)

The sequence g(α + n, β + n, γ + n) converges as n → ∞.

One can also show that the convergence is monotone.
Murnaghan’s result is part of a much larger pattern of stability....



Motivation

Why should we care about stability?

C. Bowman, M. De Visscher and R. Orellana:
Murnaghan’s stable coefficients are related to tensor product
multiplicities in the partition algebra.

T. Church, J. Ellenberg and B. Farb,
“FI -modules: a new approach to stability for Sn-reps.”
A category whose objects are sequences of Sn-modules for
n > 1. Finite generation ⇒ multiplicities stabilize.

S. Sam and A. Snowden,
“Stability patterns in representation theory.”
Many classical groups have representation theories with stable
limits.

We will be considering limits that don’t necessarily fit into these
frameworks...
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2. A First Glimpse

Why restrict ourselves to adding columns of length 1?
E.g., why not investigate

g(α + nk , β + nk , γ + nk) in the limit n → ∞?

Bad news at k = 2: no convergence, no monotonicity.

g(nn, nn, nn) =

{

1 if n even,

0 if n odd.

However, the bad news is actually not bad at all.

Fact

The sequence g(α + n2, β + n2, γ + n2) breaks into monotone

convergent subsequences, one for even n, and one for odd n.

Convergence is subtle, but can be reduced to the 2-row case.
For 2-row cases, there are known (messy, ad-hoc) formulas.
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In general these sequences grow without bound.



And what about k = 3, 4, 5, . . . ?
In general these sequences grow without bound.

Problem (first draft)

Characterize all triples αβγ such that

lim
n→∞

g(λµν + n · αβγ)

converges for all λµν.

Examples include αβγ = (1, 1, 1) (Murnaghan) and (22, 22, 22).



3. Monotonicity

Kronecker coefficients also live in the GL-world.

Let V (α) = irrep of gl(V ) with highest weight α.

Makes sense if ℓ(α) 6 dim V ; 0 otherwise.

V (m) = Sm(V ) (homog. polys of degree m over V ).

Fact

Provided that V1, V2, V3 have sufficiently large dimensions,

g(αβγ) is the multiplicity of V1(α) ⊗ V2(β) ⊗ V3(γ) in

Sm(V1 ⊗ V2 ⊗ V3) as a gl(V1) ⊕ gl(V2) ⊕ gl(V3)-module.

Equivalently, g(αβγ) is the dimension of the space of maximal
vectors of weight α ⊕ β ⊕ γ in S∗(V1 ⊗ V2 ⊗ V3).

Maximal means killed by the strictly upper triangular part of
gl(V1) ⊕ gl(V2) ⊕ gl(V3).



Key Point: maximal vectors in S∗(·) form a graded subring R.

So if f1 . . . , fr ∈ R are linearly independent of h.w. λ ⊕ µ ⊕ ν,
and g ∈ R has h.w. α ⊕ β ⊕ γ, then gf1, . . . , gfr ∈ R are linearly
independent of h.w. (λ + α) ⊕ (µ + β) ⊕ (ν + γ). This proves...

Proposition

If g(αβγ) > 0, then g(λµν + αβγ) > g(λµν).

Corollary (probably well-known)

G := {αβγ : g(αβγ) > 0} is a semigroup.

Corollary

If g(αβγ) > 0, then g(λµν + n · αβγ) is weakly increasing.
In particular, it converges iff it is bounded.

Example: g(11, 11, 11) = 0, g(22, 22, 22) = 1 explains the
previously observed instance of “alternating” monotonicity.
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Problem (improved)

Characterize in some practical way all stable triples; i.e., all
αβγ ∈ G such that g(λµν + n · αβγ)n>1 is bounded (equivalently,
convergent) for all λµν ∈ G.

Claim

(α, α,m) is stable for all α ⊢ m.

(α, α′, 1m) is stable for all α ⊢ m.

More examples will be forthcoming...



4. Some Non-Convergence

Claim

If g(αβγ) > 2, then g(n · αβγ) > n + 1.

This bound can be sharp; e.g., g(n · (42, 42, 42)) = n + 1.

Corollary

If αβγ is stable, then g(n · αβγ) = 1 for all n > 1.

Example: g(23, 23, 23) = 1, but g(43, 43, 43) = 2,
so (23, 23, 23) is not stable.

Proof of Claim: digression

Let f1, f2 ∈ R be linearly independent, h.w. α ⊕ β ⊕ γ.
Then f1, f2 are algebraically independent(!).
So f n

1 , f n−1
1 f2, . . . , f

n
2 ∈ R are linearly independent.

Each has h.w. nα ⊕ nβ ⊕ nγ.
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Conjecture

If g(n · αβγ) = 1 for all n > 1, then αβγ is stable.

Intuition: Suppose we had a positive formula

g(αβγ) = #(ZN ∩ Pαβγ),

where Pαβγ is a Q-polytope with walls varying linearly with αβγ.

If so, then g(n · αβγ) would be an Ehrhart quasi-polynomial.
(We do know that g(n · αβγ) is a quasi-polynomial for large n.)

Having g(n · αβγ) = 1 for all n > 1 implies that dim Pαβγ = 0 and
that the unique point p ∈ Pαβγ is a lattice point.

⇒ Pλµν+n·αβγ ⊂ a ball of fixed radius centered at np.
⇒ g(λµν + n · αβγ) is bounded.
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How to prove that αβγ is stable?

Idea: Pass to reducible Sm-reps, and represent their tensor product
multiplicities using integer points in polytopes.

It is surprising how effective this can be in exposing stability.



5. Some Convergence/Stability

How to prove that αβγ is stable?

Idea: Pass to reducible Sm-reps, and represent their tensor product
multiplicities using integer points in polytopes.

It is surprising how effective this can be in exposing stability.

Let Mα := Sm-action on Sm/Sα1 × Sα2 × · · · (a perm. rep).

Easy: Mα ⊗ Mβ
∼=

⊕

T∈C(α,β)

Mco(T ), where C (α, β) is the

set of integer points in the transportation polytope

Q(α, β) =
{

[xij ] : xij > 0,
∑

j xij = αi ,
∑

i xij = βj

}

,

and co(T ) denotes the content of T (a partition).



Definition: h(αβγ) := multiplicity of Iγ in Mα ⊗ Mβ.
Yes, h(αβγ) is a count of integer points in a certain polytope.
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Definition: h(αβγ) := multiplicity of Iγ in Mα ⊗ Mβ.
Yes, h(αβγ) is a count of integer points in a certain polytope.

Better: h(αβγ) =
∑

T Kγ,co(T ), where
Kγ,δ = multiplicity of Iγ in Mδ (Kostka number),
and T ranges over the integer points of

Q(α, β; γ) :=
{

[xij ] ∈ Q(α, β) : co(xij) 6 γ
}

.

Theorem

If αβγ ∈ G and h(n · αβγ) = 1 for all n > 1, then αβγ is stable.

Note: h(n · αβγ) = 1 for all n > 1 iff Q(α, β; γ) = {T} for some
integer table T such that Kγ,co(T ) = 1.

Proof: Recycle the “proof” that g(n · αβγ) = 1 ⇒ stability.



Remarks

How effective is this theorem at finding stable triples?

n #Gn/∼ #stable
1 1 1
2 2 2
3 5 4 (21, 21, 21) not stable
4 15 11 Theorem⇒ all but 2
5 40 18 Theorem⇒ all but 3

Theorem ⇒ (m, α, α) is stable; Q(m, α) is 0-dimensional.

Theorem ⇒ (α, α′, 1m) is stable; here

Q(α, α′; 1m) = {T}, T =





1 1 1 1
1 1 0 0
1 0 0 0



 .
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Having h(αβγ) = 1 is equivalent to having
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Q(α, β; γ) need not be a lattice polytope even if it contains
only one lattice point; i.e., (2) is necessary.
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If h(αβγ) = 1, then h(n · αβγ) = 1 for all n > 1.

Confirmed for partitions of size 6 10.

Having h(αβγ) = 1 is equivalent to having
(1) a unique integer T ∈ Q(α, β; γ), and (2) Kγ,co(T ) = 1.

Q(α, β; γ) need not be a lattice polytope even if it contains
only one lattice point; i.e., (2) is necessary.

Problem

Identify the isolated integer points T ∈ Q(α, β); i.e., all T such
that no other integer T ′ ∈ Q(α, β) has co(T ′) 6 co(T ).

If the conjecture is true and T ∈ Q(α, β) is isolated and has
content γ, then αβγ is stable.

If T is isolated, then T must be a plane partition.
The converse is true for ℓ(α) 6 2 but not in general.



Stanley 700 battery jump starter



An Algebra Digression

It would be nice to have growth bounds that go beyond linear.

Definition/Problem

Define δ(n, d , r) to be the minimum, over all sequences f1, . . . , fr
of linearly independent homogeneous polynomials of degree d , of

dim Span{f i1
1 · · · f ir

r : i1 + · · · + ir = n}.

The problem is to determine δ(n, d , r).

Example: δ(n, d , 2) = n + 1.
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It would be nice to have growth bounds that go beyond linear.

Definition/Problem

Define δ(n, d , r) to be the minimum, over all sequences f1, . . . , fr
of linearly independent homogeneous polynomials of degree d , of

dim Span{f i1
1 · · · f ir

r : i1 + · · · + ir = n}.

The problem is to determine δ(n, d , r).

Example: δ(n, d , 2) = n + 1.

Consequence:
If g(αβγ) = r and α, β, γ ⊢ d , then g(n · αβγ) > δ(n, d , r).

Intuition:
The optimal case should be to take f1, . . . , fr to be monomials in
as few variables as possible.
Example: If d = 5, r = 3, take f1, f2, f3 = x5, x4y , x3y2.


