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An ourrene of a pattern p in a permutation π is a sub-

sequene in π whose letters appear in the same order of
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An ourrene of a pattern p in a permutation π is a sub-

sequene in π whose letters appear in the same order of

size as those in p.

463 is an ourrene of 231 in 416325

If π has no ourrene of p then π avoids p.

4173625 avoids 4321

(No dereasing subsequene of length 4)
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The set of all permutations forms a poset P

with respet to pattern ontainment
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The set of all permutations forms a poset P

with respet to pattern ontainment

σ 6 τ if σ is a pattern in τ
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· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The bottom of the poset P
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· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The bottom of the poset PThe bottom of the poset P

2314 ontains

213 as a pattern
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· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The interval [12,2314] = {π | 12 6 π 6 2314}
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123 132 213 231 312 321

12 21

1

The interval [12,2314] = {π | 12 6 π 6 2314}
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The Möbius funtion of an interval I

•

• • •

• • •

•

The Möbius funtion on I is de�ned by µ(x, x) = 1 and

∑

x6t6y

µ(x, t) = 0 if x < y
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Computing µ(•, y) on an interval I
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Computing the Möbius funtion for the pattern poset

A very short prehistory
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Computing the Möbius funtion for the pattern poset

A very short prehistory

Wilf (2002): Should be done
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Computing the Möbius funtion for the pattern poset

A very short prehistory

Wilf (2002): Should be done

Wilf (2003): A mess. Don't touh it.
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Jason Smith (2014)

A desent in a permutation is a letter followed by a smaller

one

516792348
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Jason Smith (2014)

An adjaeny in a permutation is a maximal inreasing se-

quene of letters adjaent in position and value:

516792348
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5734 and 6734
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Jason Smith (2014)

An adjaeny in a permutation is a maximal inreasing se-

quene of letters adjaent in position and value:

516792348

516792348

The tail of an adjaeny is all but its �rst letter.

An ourrene of a pattern in a permutation π is normal if

the ourrene ontains all the tails of π.

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .
27



Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .
28



Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then
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Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),
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where σ(τ) is the number of ourrenes of σ in τ .
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Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of ourrenes of σ in τ .

And, the interval [σ, τ ] is shellable.

That is, the order omplex of [σ, τ ] is shellable.
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The Möbius funtion equals the redued Euler harateristi
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Nonshellable omplex

• µ(σ,τ ) equals redued Euler harateristi of ∆((σ,τ ))

•

A shellable omplex is homotopially a wedge of spheres.

•

Its redued Euler harateristi is the number of spheres.

•

It has nontrivial homology at most in the top dimension.

42



Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of ourrenes of σ in τ .

And, the interval [σ, τ ] is shellable.

Proof: Bijet to subword order and use Björner's results

(1988).

43



Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then
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Therefore,

|µ(σ, τ)| 6 σ(τ),
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And, the interval [σ, τ ] is shellable.

Theorem: Let π be any permutation with a segment of

three onseutive numbers in dereasing or inreasing order.

Then µ(1,π) = 0.
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Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of ourrenes of σ in τ .

And, the interval [σ, τ ] is shellable.

Theorem: Let π be any permutation with a segment of

three onseutive numbers in dereasing or inreasing order.

Then µ(1,π) = 0.

µ(1, 71654823) = 0
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Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of ourrenes of σ in τ .

And, the interval [σ, τ ] is shellable.

Theorem: Let π be any permutation with a segment of

three onseutive numbers in dereasing or inreasing order.

Then µ(1,π) = 0.

In fat, the interval [1,π] is ontratible.
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Jason Smith (2014)

Theorem: If σ and τ have the same number of desents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal ourrenes of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of ourrenes of σ in τ .

And, the interval [σ, τ ] is shellable.

There are results/onjetures analogous to the above for

the layered and separable permutations.
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Sagan-Vatter (2005): Möbius funtion for layered permutations
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Sagan-Vatter (2005): Möbius funtion for layered permutations

3 2 1 5 4 6 8 7

A layered permutation is a onatenation of dereasing se-

quenes, eah smaller than the next.
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Sagan-Vatter (2005): Möbius funtion for layered permutations

•

•

•

•

•

•

•

•

3 2 1 5 4 6 8 7

(Any subsequene of a layered permutation is layered)
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Sagan-Vatter (2005): Möbius funtion for layered permutations
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•

•

3 2 1 5 4 6 8 7

An e�etive formula, but too long to �t inside these margins . . .
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Sagan-Vatter (2005): Möbius funtion for layered permutations

•

•

•

•

•

•

•

•

3 2 1 5 4 6 8 7

An e�etive formula, but too long to �t inside these margins . . .

(Similar to permutations with �xed number of desents)
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Sagan-Vatter (2005): Möbius funtion for layered permutations
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3 2 1 5 4 6 8 7

A speial ase of the separable permutations.
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4 2 3 5 1 7 8 6
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4 2 3 5 1 7 8 6
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A deomposable permutation

is a diret sum

42351786 = 42351⊕ 231
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4 2 3 5 1 7 8 6
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•

•

•

•

•

•

•

•

A deomposable permutation

is a diret sum

42351786 = 42351⊕ 231
A skew-deomposable

permutation is a skew sum

76841325 = 213⊖ 41325

61
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•

A permutation is separable if

it an be generated from 1 by

diret sums and skew sums.
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Separable

A permutation is separable if

it an be generated from 1 by

diret sums and skew sums.
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A permutation is separable if

it an be generated from 1 by

diret sums and skew sums.

Deomposes by skew/diret

sums into singletons
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•
Separable

A permutation is separable if

it an be generated from 1 by

diret sums and skew sums.

Deomposes by skew/diret

sums into singletons

A permutation is separable if

and only if it avoids the pat-

terns 2413 and 3142.
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4 2 3 5 1 7 8 6

•

•

•

•

•

•

•

•
Separable

A permutation is separable if

it an be generated from 1 by

diret sums and skew sums.

Deomposes by skew/diret

sums into singletons

A permutation is separable if

and only if it avoids the pat-

terns 2413 and 3142.

2 4 1 3

•

•

•

•

Not separable
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .
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Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .
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Nan Li −→ L

Brue Sagan −→ S
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Nan Li −→ L

Brue Sagan −→ S

E. Babson, A. Björner, L, V. Welker, J. Shareshian
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Brue Sagan −→ S

Lou Billera −→ B
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Nan Li −→ L

Brue Sagan −→ S

Lou Billera −→ B

Mihelle Wahs −→ MW

Peter MNamara −→ MN

Abbreviating your last name to a single letter implies every-

body should remember your name.
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Nan Li −→ L

Brue Sagan −→ S

Lou Billera −→ B

Mihelle Wahs −→ MW

Peter MNamara −→ MN

Abbreviating your last name to a single letter implies every-

body should remember your name.

Let's put an end to this immodesty!
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Nan Li −→ L

Brue Sagan −→ S

Lou Billera −→ B

Mihelle Wahs −→ MW

Peter MNamara −→ MN

Abbreviating your last name to a single letter implies every-

body should remember your name.

Let's put an end to this immodesty!

(Unless your name is Central Shipyard, in whih ase you

may be forgiven)
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .

(This omputes µ(σ,τ ) in polynomial time)
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Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
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Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of ourrenes of σ in τ .
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of ourrenes of σ in τ .

(A generalization of a onjeture of Tenner and Steingríms-

son)
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of ourrenes of σ in τ .

µ(135 . . . (2k-1) (2k) . . .42,135 . . . (2n-1) (2n) . . .42) =
(
n+k−1
n−k

)
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of ourrenes of σ in τ .

µ(1342, 13578642) =
(
8/2+4/2−1
8/2−4/2

)
=

(
5
2

)
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of ourrenes of σ in τ .

Corollary: If τ is separable, then µ(1, τ) ∈ {0,1,−1}.
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Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =
∑

X∈OP

(�1)parity(X)

where the sum is over unpaired ourrenes of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of ourrenes of σ in τ .

Corollary: If τ is separable, then µ(1, τ) ∈ {0,1,−1}.

Neither orollary true in general
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Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.
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P antihain:

1 2 3 4 · · ·
• • • • · · ·

1344 6P 113414

1343 66P 113414
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1344 6P 113414

1343 66P 113414

P hain:
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• 2

• 1

1343 6P 113414
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Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P antihain:

1 2 3 4 · · ·
• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

.
.
.

• 4

• 3

• 2

• 1

1343 6P 113414 (3 <P 4)
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Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P antihain:

1 2 3 4 · · ·
• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

.
.
.

• 4

• 3

• 2

• 1

1343 6P 113414

Fixed-des

Layered
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Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P antihain:

1 2 3 4 · · ·
• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

.
.
.

• 4

• 3

• 2

• 1

1343 6P 113414

Fixed-des

Layered

Is there a family of intervals of permutations interpolating

between these two extremes (that are shellable, or at least

with a tratable Möbius funtion)?
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MNamara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest deomposition.

Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else
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Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else

Corollary: If σ is indeomposable, then µ(σ, τ) = 0 unless

τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk or τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk ⊕ 1.
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Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest deomposition.

Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else

Corollary: If σ is indeomposable, then µ(σ, τ) = 0 unless

τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk or τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk ⊕ 1.

Corollary: If σ = σ1 ⊕ σ2 and τ = τ1 ⊕ τ2 are �nest,

τ1, τ2 > 1 and τ1 6= τ2, then µ(σ, τ) = µ(σ1, τ1) · µ(σ2, τ2).
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MNamara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest deomposition.

Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else

Corollary: If σ is indeomposable, then µ(σ, τ) = 0 unless

τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk or τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk ⊕ 1.

Corollary: If σ = σ1 ⊕ σ2 and τ = τ1 ⊕ τ2 are �nest,

τ1, τ2 > 1 and τ1 6= τ2, then µ(σ, τ) = µ(σ1, τ1) · µ(σ2, τ2).

(only sometimes this is beause [σ, τ ] is a diret produt)
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MNamara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest deomposition.

Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else

This redues the omputation of the Möbius funtion to

indeomposable permutations.
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Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest deomposition.

Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else

This redues the omputation of the Möbius funtion to

indeomposable permutations.

Unfortunately, almost all permutations are indeomposable,

and we have no idea how to deal with them in general . . .
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MNamara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest deomposition.

Then

µ(σ,τ ) =
∑

σ=σ1⊕...⊕σk

∏

m
µ(σm,τm) + ǫm

where ǫm =




1, if σm = ∅ and τm−1 = τm

0, else

This redues the omputation of the Möbius funtion to

indeomposable permutations.

Unfortunately, almost all permutations are indeomposable,

and we have no idea how to deal with them in general . . .

X
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.

2136547

215436

3216547 2154367 21543761326547

21437658 14327658 21543768 21543876

215438769
A disonneted interval of rank 3
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.

Theorem: Almost every interval has a disonneted subin-

terval of rank at least three.
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.

Theorem: Almost every interval has a disonneted subin-

terval of rank at least three.

Follows from the Stanley-Wilf onjeture:

The number of permutations avoiding any given

pattern p grows only exponentially.
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.

Theorem: Almost every interval has a disonneted subin-

terval of rank at least three.

Follows from the Marus-Tardos theorem:

The number of permutations avoiding any given

pattern p grows only exponentially.
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An obstrution to shellability of an interval is having a dis-

onneted subinterval of rank at least three.

Theorem: Almost every interval has a disonneted subin-

terval of rank at least three.

Follows from the Marus-Tardos theorem:

The number of permutations avoiding any given

pattern p grows only exponentially.

Thus, almost every interval [σ,τ ] (for τ large enough)

ontains the subintervals [π,π⊕π] and [π,π⊖π] for some

π > 1, one of whih is disonneted.
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MNamara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onneted if and only if σ and τ di�er by a repeated layer

of size at least 3.
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of size at least 3.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 1 5 4 3 6 2 1 5 4 3 8 7 6 9
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2 1 5 4 3 6 2 1 5 4 3 8 7 6 9

[215436, 215438769℄ is disonneted
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MNamara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onneted if and only if σ and τ di�er by a repeated layer

of size at least 3.
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MNamara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onneted if and only if σ and τ di�er by a repeated layer

of size at least 3.
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MNamara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onneted if and only if σ and τ di�er by a repeated layer

of size at least 3.

Theorem: An interval of layered permutations is shellable

if and only if it has no disonneted subintervals of rank 3

or more.
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MNamara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onneted if and only if σ and τ di�er by a repeated layer

of size at least 3.

Theorem: An interval of layered permutations is shellable

if and only if it has no disonneted subintervals of rank 3

or more.

Conjeture: The same is true of separable permutations.
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The interval

[123,3416725]

has no non-trivial disonneted subintervals, and alternating

Möbius funtion, but homology in di�erent dimensions.

Betti numbers: 0, 1, 2.
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Some questions:

•

What proportion of intervals have µ = 0?
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Some questions:

•

What proportion of intervals have µ = 0? Almost all?

•

What kinds of intervals exist in P? Tori?

•

Is there torsion in the homology of any intervals?

•

Is the rank funtion of every interval unimodal?

•

How does max(|µ(1, π)|) grow with the length of π?
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Thanks, Rihard!

(and you all ⌣̈)

134


