The topology of the
permutation pattern poset

Einar Steingrimsson
University of Strathclyde

Work by Jason P. Smith and
joint work with Peter McNamara

and with A. Burstein, V. Jelinek and E. Jelinkova



An occurrence of a pattern P in a permutation 7T is a sub-
sequence in 7 whose letters appear in the same order of
size as those in P.

463 is an occurrence of 231 in 416325
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If 7T has no occurrence of P then 7 avoids P.

4173625 avoids 4321



An occurrence of a pattern P in a permutation 7 is a sub-
sequence in 7 whose letters appear in the same order of
size as those in P.

463 is an occurrence of 231 in 416325

If 7T has no occurrence of P then 7 avoids P.

4173625 avoids 4321

(No decreasing subsequence of length 4)



The set of all permutations forms a poset P
with respect to pattern containment



The set of all permutations forms a poset P
with respect to pattern containment

O <7T if O is a patternin 7T



2314

123 132 213 231 312 321

12 21

N

1

The bottom of the poset P
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123 132 213 231 312 321

12 21

2314 contains
213 as a pattern \/
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The interval [12,2314]
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The interval [12,2314] = {xn |12 <7 <2314}
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The Mobius function of an interval Z

The Mo&bius function on T is defined by (4(x,z) =1 and

> p(z,t) =0 ifz<y

<ty
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Computing (e,y) on an interval Z

-1

The Mo&bius function on T is defined by (4(x,z) =1 and

zz: U(x,t) =0 ifz <y

<ty
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Computing the Mobius function for the pattern poset

A very short prehistory
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Computing the Mobius function for the pattern poset

A very short prehistory

Wilf (2002): Should be done
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Computing the Mobius function for the pattern poset

A very short prehistory

Wilf (2002): Should be done

Wilf (2003): A mess. Don't touch it.
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Jason Smith (2014)

A descent in a permutation is a letter followed by a smaller
one

516792348

17



A descent in a permutation is a letter followed by a smaller
one

516792348
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348

The tail of an adjacency is all but its first letter.
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348

The tail of an adjacency is all but its first letter.
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348

The tail of an adjacency is all but its first letter.

An occurrence of a pattern in a permutation 7T is normal if
the occurrence contains all the tails of 7T.
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348
5 7 34

The tail of an adjacency is all but its first letter.

An occurrence of a pattern in a permutation 7T is normal if
the occurrence contains all the tails of 7T.

The normal occurrences of 3412 in 516792348:

5734
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348
67 34

The tail of an adjacency is all but its first letter.

An occurrence of a pattern in a permutation 7T is normal if
the occurrence contains all the tails of 7T.

The normal occurrences of 3412 in 516792348:

5734 and 6734
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An adjacency in a permutation is a maximal increasing se-
quence of letters adjacent in position and value:

516792348
67 34

The tail of an adjacency is all but its first letter.

An occurrence of a pattern in a permutation 7T is normal if
the occurrence contains all the tails of 7T.

Theorem: If o and 7 have the same number of descents,

then
w(o, ) = (=DI"=IN (o, 7),

where N (o, 1) is the number of normal occurrences of o in .
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Theorem: If o and 7 have the same number of descents,
then
w(o,7) = (=1)/"=lPIN (o, 1),

where N (o, 7) is the number of normal occurrences of o in .
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Theorem: If o and 7 have the same number of descents,

then
w(o, ) = (=DI"=lIN (o, 7),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, )| < o(7),

where o(7) is the number of occurrences of o in 7.
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Theorem: If o and 7 have the same number of descents,

then
w(o, ) = (=DI"=lIN (o, 7),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, 7)) < o(7),

where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.
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Theorem: If o and 7 have the same number of descents,

then
w(o, ) = (=DI"=lIN (o, 7),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, 7)) < o(7),

where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.

That is, the order complex of [o, r] is shellable.
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Order complex of P

C
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Order complex of P

C
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Order complex of P

C

s
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Order complex of P

C

s

35



Order complex of P

C

Contractible

>

A sphere
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Order complex of P

C f

Contractible

K
N
5§3 A

1 A sphere

The Mdbius function equals the reduced Euler characteristic
37



Shellable complex

Nonshellable complex
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Shellable complex

Nonshellable complex
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Shellable complex

Nonshellable complex
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Shellable complex

Nonshellable complex
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Shellable complex Nonshellable complex

(0, T) equals reduced Euler characteristic of A((0,T))
A shellable complex is homotopically a wedge of spheres.
Its reduced Euler characteristic is the number of spheres.

It has nontrivial homology at most in the top dimension.

42



Theorem: If o and 7 have the same number of descents,
then
w(o,7) = (=1)/"=lPIN (o, 1),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, 7)| < o(71),

where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.

Proof: Biject to subword order and use Bjorner’s results
(1988).
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Theorem: If o and 7 have the same number of descents,
then
w(o,7) = (=1)/"=lPIN (o, 1),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, 7)) < o(7),

where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.

Theorem: Let 7T be any permutation with a segment of
three consecutive numbers in decreasing or increasing order.
Then p(1,77) = 0.
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Theorem: If o and 7 have the same number of descents,
then
w(o,7) = (=1)/"=lPIN (o, 1),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, 7)) < o(7),

where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.

Theorem: Let 7T be any permutation with a segment of
three consecutive numbers in decreasing or increasing order.
Then p(1,77) = 0.

(1, 71654823) =0 45



Theorem: If o and 7 have the same number of descents,

then
w(o, ) = (=DI"=lIN (o, 7),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
(o, 7)) < o(7),

where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.

Theorem: Let 7T be any permutation with a segment of
three consecutive numbers in decreasing or increasing order.
Then p(1,77) = 0.

In fact, the interval [1,77] is contractible. 46



Theorem: If o and 7 have the same number of descents,
then
w(o,7) = (=1)/"=lPIN (o, 1),

where N (o, 7) is the number of normal occurrences of o in .

Therefore,
ju(o, 7)| < o(7),
where o(7) is the number of occurrences of o in 7.

And, the interval [o, 7] is shellable.

There are results/conjectures analogous to the above for
the layered and separable permutations.
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Sagan-Vatter (2005): Mobius function for layered permutations
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Sagan-Vatter (2005): Mobius function for layered permutations

3215 46 87
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Sagan-Vatter (2005): Mobius function for layered permutations
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Sagan-Vatter (2005): Mobius function for layered permutations

A layered permutation is a concatenation of decreasing se-
quences, each smaller than the next.
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Sagan-Vatter (2005): Mobius function for layered permutations

3 2 1||5 4{|6||8 7

A layered permutation is a concatenation of decreasing se-
quences, each smaller than the next.
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Sagan-Vatter (2005): Mobius function for layered permutations

3 2 1||5 4{|6||8 7
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Sagan-Vatter (2005): Mobius function for layered permutations

3 2 1||5 4{|6||8 7

(Any subsequence of a layered permutation is layered)
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Sagan-Vatter (2005): Mobius function for layered permutations

3 2 1||5 4{|6||8 7

An effective formula, but too long to fit inside these margins . ..
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Sagan-Vatter (2005): Mobius function for layered permutations

3 2 1||5 4{|6||8 7

An effective formula, but too long to fit inside these margins . ..

(Similar to permutations with fixed number of descents)
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Sagan-Vatter (2005): Mobius function for layered permutations

3 2 1||5 4{|6||8 7

A special case of the separable permutations.
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4 2 3 51 7 8 6
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4 2 3 51 7 8 6
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4 2 3 51 7 8 6

A decomposable permutation
IS a direct sum

42351786 = 42351 ¢ 231



4 2 3 51 7 8 6

A decomposable permutation A skew-decomposable
IS a direct sum permutation is a skew sum

42351786 = 42351 ¢ 231 76841325 = 213641325
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4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.
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4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.
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4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.
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4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.

65



4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.
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4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.
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4 2 3 51 7 8 6

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.
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4 2 3 51 7 8 6

Separable

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.

69



4 2 3 51 7 8 6

Separable

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.

Decomposes by skew/direct
sums into singletons
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4 2 3 51 7 8 6

Separable

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.

Decomposes by skew/direct
sums into singletons

A permutation is separable if
and only if it avoids the pat-
terns 2413 and 3142.
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4 2 3 51 7 8 6

Separable

2 4 1 3

Not separable

A permutation is separable if
it can be generated from 1 by
direct sums and skew sums.

Decomposes by skew/direct
sums into singletons

A permutation is separable if
and only if it avoids the pat-
terns 2413 and 3142.
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Burstein, Jelinek, Jelinkova, Steingrimsson:

Theorem: If 0 and T are separable permutations, then

,LL(U,T)Z Z (_1>parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.
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Burstein, Jelinek, Jelinkova, Steingrimsson:

Theorem: If 0 and T are separable permutations, then

/’L(O-7T>: Z (_1>parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.
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Nan Li — L

Bruce Sagan — S
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Nan Li — L
Bruce Sagan — S

E. Babson, A. Bjorner, L, V. Welker, J. Shareshian
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Nan Li — L

Bruce Sagan — S

7’



Nan Li — L

Bruce Sagan — S

Lou Billera — B_
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Nan Li — L

Bruce Sagan — S

Lou Billera — B_

Michelle Wachs — MW
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Nan Li — L

Bruce Sagan — S

Lou Billera — B_
Michelle Wachs — MW

Peter McNamara — McN
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Nan Li — L

Bruce Sagan — S

Lou Billera — B_
Michelle Wachs — MW

Peter McNamara — McN

Abbreviating your last name to a single letter implies every-
body should remember your name.
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Nan Li — L

Bruce Sagan — S

Lou Billera — B_
Michelle Wachs — MW

Peter McNamara — McN

Abbreviating your last name to a single letter implies every-
body should remember your name.

Let's put an end to this immodesty!
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Nan Li — L

Bruce Sagan — S

Lou Billera — B_
Michelle Wachs — MW

Peter McNamara — McN

Abbreviating your last name to a single letter implies every-
body should remember your name.

Let's put an end to this immodesty!

(Unless your name is Central Shipyard, in which case you
may be forgiven)
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

(This computes (0, T) in polynomial time)
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

Corollary: If 0 and T are separable then

(o, T)| <0 (T)

where 0 (7T) is the number of occurrences of O in T.
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

Corollary: If 0 and T are separable then

(0, T)| < O0(T)
where 0 (7T) is the number of occurrences of O in T.

(A generalization of a conjecture of Tenner and Steingrims-
son)
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

Corollary: If 0 and T are separable then

(o, T)| < o(T)

where 0 (7T) is the number of occurrences of O in T.

p(135...(2k-1) (2k)...42,135...(2n-1) (2n)...42) = (nﬁgl)
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

Corollary: If 0 and T are separable then

(o, T)| < o(T)

where 0 (7T) is the number of occurrences of O in T.

(4(1342,13578642) = (8/82/;1551) = (3)
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

Corollary: If 0 and T are separable then
(o, T)| <o(T)

where 0 (7T) is the number of occurrences of O in T.

Corollary: If 7 is separable, then (1,7) € {0,1,—-1}.
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Theorem: If 0 and T are separable permutations, then

,LL(O-,T): Z (_1)parity(x)

XeOPpP

where the sum is over unpaired occurrences of O in T.

Corollary: If 0 and T are separable then
(o, 7)) < o(T)
where 0 (7T) is the number of occurrences of O in T.

Corollary: If 7 is separable, then (1,7) € {0,1,—-1}.

Neither corollary true in general
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.

P antichain:

1 2 3 4

1344 <p 113414
1343 £ p 113414
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.

P antichain:

1 2 3 4

1344 <p 113414
1343 £ p 113414
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.

P antichain: P chain:

1 2 3 4 '4

[ ) [ ) [ ) [ ) 3
2

1344 <p 113414 1

1343 £p 113414 1343 <p 113414
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.

P antichain: P chain:

1 2 3 4 '4

[ ) [ ) [ ) [ ) 3
2

1344 <p 113414 1

1343 £ p 113414 1343 <p 113414 (3<p4)
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.

P antichain: P chain:
1 2 3 4 ; 4
[ ) [ ) [ ) [ ) 3
2
1344 <p 113414 1
1343 £p 113414 1343 <p 113414

Fixed-des L ayered
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Layered intervals and fixed-des intervals are isomorphic to
two extremes in the Generalized subword order (determined
by a poset P) of Sagan and Vatter.

P antichain: P chain:
1 2 3 4 ; 4
[ ) [ ) [ ) [ ) 3
2
1344 <p 113414 1
1343 £p 113414 1343 <p 113414
Fixed-des L ayered

Is there a family of intervals of permutations interpolating
between these two extremes (that are shellable, or at least
with a tractable Mobius function)?
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McNamara-Steingrimsson (reformulation of BJJS):

Theorem: Let T =T1&---& T be finest decomposition.
Then

u(o,T) = >, 1[#(Om, Tm) + €m

1, fo,=0and T,,_1=Tm

where €Em =
0, else
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Theorem: Let T =T1&---& T be finest decomposition.
Then

u(o,T) = > 1[#(Om, Tm) + €m

1, ifop,=0and 7,,_1=Tm

where €Em =
0, else

Corollary: If o is indecomposable, then u(o,7) = 0 unless
T=T1 DD DT OF 7':7'1@7'2@"'@77@@1-
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Theorem: Let T =T1&---& T be finest decomposition.
Then

u(o,T) = > 1[#(Om, Tm) + €m

1, ifop,=0and 7,,_1=Tm

where €Em =
0, else

Corollary: If o is indecomposable, then u(o,7) = 0 unless
T=T1 DD DT OF 7':7'1@7'2@"'@77@@1-

Corollary: If 0o = 01 oo and 7 = 71 ¢ ™ are finest,
71,72 > 1 and 71 # 1, then u(o,7) = p(o1,m1) - oz, 7).
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Theorem: Let T =T1&---& T be finest decomposition.
Then

u(o,T) = > 1[#(Om, Tm) + €m

1, ifop,=0and 7,,_1=Tm

where €Em =
0, else

Corollary: If o is indecomposable, then u(o,7) = 0 unless
T=T1 DD DT OF 7‘271697'2@"°@77<;@1-

Corollary: If 0o = 01 oo and 7 = 71 ¢ ™ are finest,
71,72 > 1 and 71 # 1, then u(o,7) = p(o1,m1) - oz, 7).

(only sometimes this is because [o, 7] is a direct product)
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Theorem: Let T =T1&---& T be finest decomposition.
Then

u(o,T) = > 1[#(Om, Tm) + €m

1, ifop,=0and 7,,_1=Tm

where €Em =
0, else
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Theorem: Let T =T1&---& T be finest decomposition.
Then

(o, T) = > 11T m, Tm) + Em

1, ifop,=0and 7T,,_1=Tm

where Em =
0, else

This reduces the computation of the Modbius function to
indecomposable permutations.
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Theorem: Let T =T1&---& T be finest decomposition.
Then

(o, T) = > 11T m, Tm) + Em

1, ifop,=0and 7T,,_1=Tm

where Em =
0, else

This reduces the computation of the Modbius function to
indecomposable permutations.

Unfortunately, almost all permutations are indecomposable,
and we have no idea how to deal with them in general ...
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Theorem: Let T =T1&---& T be finest decomposition.
Then

(o, T) = > 11T m, Tm) + Em

1, ifop,=0and 7T,,_1=Tm

where Em =
0, else

This reduces the computation of the Modbius function to
indecomposable permutations.

l)(n‘ortunately, almost all permutations are indecomposable,
and we have no idea how to deal with them in general ...
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Theorem: Let T =T1&---& T be finest decomposition.
Then

(o, T) = > 11T m, Tm) + Em

1, ifop,=0and 7T,,_1=Tm

where Em =
0, else

This reduces the computation of the Modbius function to
indecomposable permutations.

l)(n‘ortunately, almost all permutations are indecomposable,
and we have no idea how to deal with them in general ...
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.

215438769
14327658

3216547

21543768

21437658 21543876

2154367

215436

A disconnected interval of rank 3
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.

21543768

2154367

21437658 14327658 21543876

A disconnected interval of rank 3
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.

Theorem: Almost every interval has a disconnected subin-
terval of rank at least three.
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.

Theorem: Almost every interval has a disconnected subin-
terval of rank at least three.

Follows from the Stanley-Wilf conjecture:

The number of permutations avoiding any given
pattern p grows only exponentially.
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.

Theorem: Almost every interval has a disconnected subin-
terval of rank at least three.

Follows from the Marcus-Tardos theorem:

The number of permutations avoiding any given
pattern p grows only exponentially.
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An obstruction to shellability of an interval is having a dis-
connected subinterval of rank at least three.

Theorem: Almost every interval has a disconnected subin-
terval of rank at least three.

Follows from the Marcus-Tardos theorem:

The number of permutations avoiding any given
pattern p grows only exponentially.

Thus, almost every interval [0, 7] (for 7T large enough)
contains the subintervals [7T, 7T & 7] and [7T, T © 77| for some
7T > 1, one of which is disconnected.
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McNamara and Steingrimsson:
Theorem: An interval [o, 7] of layered permutations is dis-

connected if and only if o and 7 differ by a repeated layer
of size at least 3.
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

215 4 3 6 215 43 87 6 9
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

215 4 3 6 215 43 87 6 9
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

215 4 3 6 215 43 87 6 9

[215436, 215438769] is disconnected
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

215 4 3 6 215 43 87 6 9

[215436, 215438769] is disconnected
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer

of size at least 3.

3216547

21543768

21437658 21543876

2154367

215436

[215436, 215438769] is disconnected
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

21543768

2154367

21437658 14327658 21543876

[215436, 215438769] is disconnected
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

Theorem: An interval of layered permutations is shellable
if and only if it has no disconnected subintervals of rank 3
or more.
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Theorem: An interval [o, 7] of layered permutations is dis-
connected if and only if o and 7 differ by a repeated layer
of size at least 3.

Theorem: An interval of layered permutations is shellable
if and only if it has no disconnected subintervals of rank 3
or more.

Conjecture: The same is true of separable permutations.
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The interval

[123,3416725]

has no non-trivial disconnected subintervals, and alternating
Mobius function, but homology in different dimensions.

Betti numbers: 0O, 1, 2.
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Some questions:

® \What proportion of intervals have u = 07
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Some questions:

What proportion of intervals have = 07 Almost all?
What kinds of intervals exist in P7? Tori?
Is there torsion in the homology of any intervals?

Is the rank function of every interval unimodal?
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Some questions:

What proportion of intervals have = 07 Almost all?
What kinds of intervals exist in P? Tori?

Is there torsion in the homology of any intervals?

Is the rank function of every interval unimodal?

How does max(|u(1, 7)) grow with the length of n7
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Thanks, Richard]

(and you all ©)
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