Growth of ideals in subword posets Notes for talk at conference Stanley@70, June 26, 2014 Steven Sam (joint work with Andrew Snowden)

1. Combinatorics

Let *X* be a finite set.

 $X^* = \{w = w_1 w_2 \cdots w_n \mid w_i \in X\}$ words on X.

Poset structures \leq on X^* :

- (1) $w \le_I w'$ if w is a subword of w', i.e., there exists a function $f: [\ell(w)] \to [\ell(w')]$ with $f(1) < f(2) < \cdots < f(\ell(w))$ and $w_i = w'_{f(i)}$.
- (2) $w \leq_{II} w'$ if $w \leq_{I} w'$ and furthermore, we can choose f as above such that for all j, there exists $f(i) \leq j$ such that $w'_{f(i)} = w'_{j}$.

Example 1.1. X = [2]. $112 \le_I 1212$ but $112 \not\le_{II} 1212$.

 $I \subseteq X^*$ is an **ideal** if $x \in I$ and $y \ge x$ implies $y \in I$.

Hilbert series of *I*:

$$\mathbf{H}_I(t) = \sum_{w \in I} t^{\ell(w)}$$

Proposition 1.2. In both cases, $H_I(t)$ is a rational function f(t)/g(t) where $g(t) = \prod_i (1 - a_i t)$ and $a_i \in \{1, 2, ..., |X|\}$.

Proof idea:

- Generating function of regular language is rational: translate the elements in an ideal into walks in directed graph and use transfer-matrix method (roots of denominator are inverses of eigenvalues of adjacency matrix)
- For principal ideal $I_w = \{w' \ge w\}$, use graph which "tracks progress." Example: case 1, X = [3] and w = 1213:

$$\overset{2,3}{\swarrow} \overset{1,3}{\swarrow} \overset{2,3}{\swarrow} \overset{1,2}{\swarrow} \overset{1,2}{\swarrow} \overset{1,2,3}{\swarrow} \\ \varnothing \overset{-1}{\Rightarrow} 1 \overset{-2}{\Rightarrow} 12 \overset{-1}{\Rightarrow} 121 \overset{-3}{\Rightarrow} 1213$$

The labeled walks from \emptyset to 1213 are exactly those words that contain 1213 as a subword under \leq_I .

For case 2, we introduce a sink "bad" which shows the difference between the two definitions:

$$\varnothing \xrightarrow{1 \to 1} 1 \xrightarrow{2 \to 12} 12 \xrightarrow{1,2 \to 121} 121 \xrightarrow{1,2 \to 1213}$$

$$2,3 \xrightarrow{3} \xrightarrow{3}$$
bad

Still, labeled walks from \emptyset to 1213 give all words that contain 1213 as a subword under \leq_{II} .

Eigenvalues are integers of desired form.

For finite unions of principal ideals, can use similar ideas (but notation is more cumbersome).

- X^* has no infinite antichains, so every ideal is a finite union of principal ideals.
 - Case 1: Higman's lemma

Case 2: we prove

2. Questions

Poset $\Pi = \bigcup_{n\geq 0} S_n$ (S_n is *n*th symmetric group) of permutations: $\sigma \leq \sigma'$ if σ is a subword of σ' (when rewritten in relative order). This is definition used in pattern avoidance (σ' contains σ as a subpattern).

Poset $\mathcal{M} \subset \Pi$ of perfect matchings (i.e., fixed-point free involutions).

What can be said about Hilbert series of ideals in these posets? There are infinite antichains in \mathcal{M} (and hence Π), so might want to restrict to the finitely generated ones (i.e., union of finitely many principal ideals). Might expect them to be D-finite, but should have more refined statements.

3. Algebra

Motivation: (algebraic structures for) infinite-dimensional combinatorial commutative algebra (Segre, Veronese varieties, etc.)

A surj-**module** is graded vector space $M = \bigoplus_{n \geq 0} M_n$ such that for every surjective function $f: [n] \to [m]$ have operator $M(f): M_m \to M_n$ (opposite!) and $M(f \circ g) = M(g) \circ M(f)$.

Submodule is graded subspace closed under all operations.

M is **finitely generated** if there exists finite $S \subset M$ such that smallest submodule containing S is M.

Hilbert series of *M*:

$$H_M(t) = \sum_{n \ge 0} \dim_{\mathbf{k}}(M_n) t^n.$$

Proposition 3.1. If M is finitely generated in degree $\leq D$, then $H_M(t)$ is a rational function f(t)/g(t) where $g(t) = \prod_i (1 - a_i t)$ and $a_i \in \{1, 2, ..., D\}$.

Proof idea:

- Define Gröbner basis theory for surj-modules to reduce to "monomial modules"
- Monomial modules are identified with ideals in (X^*, \leq_{II}) with $|X| \leq D$

Remark 3.2. • Analogous theory for (X^{\star}, \leq_I) and (decorated) injective functions

• q-analogues of surj-modules with sets replaced by \mathbf{F}_q -vector spaces (related to study of unstable modules over Steenrod algebra)