
Lattice-point counting and cyclic sieving,

or,

Ehrhart theory and cyclic sieving:
two great tastes that taste great together?

James Propp

June 24, 2014

Slides at http://jamespropp.org/polytope-csp.pdf

http://jamespropp.org/polytope-csp.pdf


Ehrhart theory

Given a polytope Π in Rd with vertices in Zd , there is a
polynomial P such that the number of lattice points in the dilated
polytope NΠ is P(N) for all non-negative integers N.

E.g., for Π in R2 with vertices (−1,−1), (0, 1), and (1,−1),
we have #(NΠ ∩Z2) = 2N2 + 2N + 1 for all N ≥ 0:
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What if the vertices aren’t lattice points?

For polytopes with vertices in Qd , we need quasipolynomials;
that is, powers of roots of unity get involved.

E.g., if Π is the polytope in R1 with vertices −1
2 and 1

2 ,
we have #(NΠ ∩Z2) = N + 1

2 + 1
2(−1)N for all N ≥ 0.



Cyclic sieving

Given a set S and a map L : S → S satisfying Ln = IdS giving rise
to an action of the cyclic group Z/nZ on S , there is (in many
cases) a “natural” polynomial p(·) such that the number of
fixed-points of Lk is |p(ζk)| for all integers k (where ζ is a
primitive nth root of unity).

More specifically, we often have #Fix(Lk) = |p(ζk)| with

p(t) =
∑
s∈S

t f (s),

where f : S → Z is some function that reflects the structure of S
and L.
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Why does this make sense?

A polynomial of the form p(t) =
∑

s∈S t
f (s) is a good candidate

for satisfying #Fix(Lk) = |p(ζk)| for all integers k :

For k a multiple of n, we get

|p(ζk)| = |p(1)| = |
∑
s∈S

1f (s)| = |S |,

the number of fixed points of Lk .

For general k, we have

|p(ζk)| = |
∑
s∈S

ζkf (s)| ≤
∑
s∈S
|ζkf (s)| = |S |.
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What am I trying to do?

I’ve been trying to combine Ehrhart Theory and cyclic sieving,
letting S be NΠ with L some linear map from Rd to itself
(restricted to NΠ ∩Zd).

Motivation: Let’s see what kind of geometrical situations lead to
cyclic sieving.

Then we can go back to combinatorial contexts and see if that
kind of geometry is latent there.



What am I trying to do?

I’ve been trying to combine Ehrhart Theory and cyclic sieving,
letting S be NΠ with L some linear map from Rd to itself
(restricted to NΠ ∩Zd).

Motivation: Let’s see what kind of geometrical situations lead to
cyclic sieving.

Then we can go back to combinatorial contexts and see if that
kind of geometry is latent there.



Why bring this up here?

Richard’s role in Ehrhart theory: e.g., his work on enumerating
semimagic squares, viewing semimagic squares as lattice points in
a suitable polytope

Richard’s role in the theory of cyclic sieving:
symmetries of plane partitions and the complementation map

→ Stembridge’s discovery of the q = −1 phenomenon
→ Reiner, Stanton, and White’s discovery of the cyclic sieving

phenomenon

Richard’s role in founding the Cambridge Combinatorics Coffee
Club
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What went wrong

My first attempt to marry Ehrhart theory and cyclic sieving failed.

My mistake, I think, was to imagine that the center of dilation has
to be in the same space as the polytope itself.

Here as in many other Ehrhart-ish situations, one should instead
STACK the dilated polytopes to form a polyhedral cone in a space
with 1 extra dimension.
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The new setup

Given:

a polyhedral cone C generated by lattice vectors v1, ..., vk in Zd ,
not generated by any proper subset;
a linear map L from Rd to Rd that takes CZ = C ∩Zd to itself
and has Ln = I ; and
a linear function r from Zd to Z (a “rank function”) whose level
sets {x : x ∈ CZ, r(x) = N} are empty when N < 0 and finite
otherwise;
we say a function f from CZ to Z is sieving when for all integers k
and for all non-negative integers N, the number of x ∈ CZ with

r(x) = N and Lkx = x equals
∣∣∣∑x∈CZ, r(x)=N ζkf (s)

∣∣∣, where ζ is a

primitive nth root of 1.



The new setup

Given:
a polyhedral cone C generated by lattice vectors v1, ..., vk in Zd ,
not generated by any proper subset;

a linear map L from Rd to Rd that takes CZ = C ∩Zd to itself
and has Ln = I ; and
a linear function r from Zd to Z (a “rank function”) whose level
sets {x : x ∈ CZ, r(x) = N} are empty when N < 0 and finite
otherwise;
we say a function f from CZ to Z is sieving when for all integers k
and for all non-negative integers N, the number of x ∈ CZ with

r(x) = N and Lkx = x equals
∣∣∣∑x∈CZ, r(x)=N ζkf (s)

∣∣∣, where ζ is a

primitive nth root of 1.



The new setup

Given:
a polyhedral cone C generated by lattice vectors v1, ..., vk in Zd ,
not generated by any proper subset;
a linear map L from Rd to Rd that takes CZ = C ∩Zd to itself
and has Ln = I ; and

a linear function r from Zd to Z (a “rank function”) whose level
sets {x : x ∈ CZ, r(x) = N} are empty when N < 0 and finite
otherwise;
we say a function f from CZ to Z is sieving when for all integers k
and for all non-negative integers N, the number of x ∈ CZ with

r(x) = N and Lkx = x equals
∣∣∣∑x∈CZ, r(x)=N ζkf (s)

∣∣∣, where ζ is a

primitive nth root of 1.



The new setup

Given:
a polyhedral cone C generated by lattice vectors v1, ..., vk in Zd ,
not generated by any proper subset;
a linear map L from Rd to Rd that takes CZ = C ∩Zd to itself
and has Ln = I ; and
a linear function r from Zd to Z (a “rank function”) whose level
sets {x : x ∈ CZ, r(x) = N} are empty when N < 0 and finite
otherwise;

we say a function f from CZ to Z is sieving when for all integers k
and for all non-negative integers N, the number of x ∈ CZ with

r(x) = N and Lkx = x equals
∣∣∣∑x∈CZ, r(x)=N ζkf (s)

∣∣∣, where ζ is a

primitive nth root of 1.



The new setup

Given:
a polyhedral cone C generated by lattice vectors v1, ..., vk in Zd ,
not generated by any proper subset;
a linear map L from Rd to Rd that takes CZ = C ∩Zd to itself
and has Ln = I ; and
a linear function r from Zd to Z (a “rank function”) whose level
sets {x : x ∈ CZ, r(x) = N} are empty when N < 0 and finite
otherwise;
we say a function f from CZ to Z is sieving

when for all integers k
and for all non-negative integers N, the number of x ∈ CZ with

r(x) = N and Lkx = x equals
∣∣∣∑x∈CZ, r(x)=N ζkf (s)

∣∣∣, where ζ is a

primitive nth root of 1.



The new setup

Given:
a polyhedral cone C generated by lattice vectors v1, ..., vk in Zd ,
not generated by any proper subset;
a linear map L from Rd to Rd that takes CZ = C ∩Zd to itself
and has Ln = I ; and
a linear function r from Zd to Z (a “rank function”) whose level
sets {x : x ∈ CZ, r(x) = N} are empty when N < 0 and finite
otherwise;
we say a function f from CZ to Z is sieving when for all integers k
and for all non-negative integers N, the number of x ∈ CZ with

r(x) = N and Lkx = x equals
∣∣∣∑x∈CZ, r(x)=N ζkf (s)

∣∣∣, where ζ is a

primitive nth root of 1.



A two-dimensional example

Example 1: Take C = 〈(2, 1), (1, 2)〉, L : (x , y) 7→ (y , x), n = 2,
r(i , j) = i + j .

r = 0

r = 1

r = 2

r = 3

r = 4

r = 5

Total points (k = 0): 1 0 1 2 1 2 3
Fixed points (k = 1): 1 0 1 0 1 0 1
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Then f (i , j) = i is sieving.



Some higher-dimensional examples you can try at home

Example 2: Take C = 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉,
L : (x , y , z) 7→ (y , z , x), n = 3, r(i , j , k) = i + j + k.

Then f (i , j , k) = j + 2k is sieving. (To generalize to higher
dimensions, write this as 0i + 1j + 2k. This example encodes the
prototypical CSP for the Z/(a + b)Z rotation action on a-element
subsets of an a + b-element set.)

Example 3: Take C = 〈(1, 0, 1), (−1, 0, 1), (0, 1, 1), (0,−1, 1)〉,
L : (x , y , z) 7→ (y ,−x , z), n = 4, r(i , j , k) = k .

Then f (i , j , k) = i + 2j is sieving.
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My old conjecture

I conjectured that we can always find a sieving function f that is
linear on Rd (as is the case for the three preceding Examples).

I found a counterexample: Let Cbad ⊂ R3 be the cone generated
by lattice vectors (2, 1, 1), (−1, 2, 1), (−2,−1, 1), and (1,−2, 1),
with rank function r(i , j , k) = k , and let L be 90-degree rotation
counterclockwise about the z-axis.

Case analysis shows that no linear sieving function f exists.

But: We can find a sieving function f that, while not linear, comes
close.
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My new conjecture

Conjecture: Given C , L, and r as above, there exists a sieving
function f such that for each generating vector vi , there is a
constant ci such that f (x + vi )− f (x) = ci for all x in CZ.

E.g., returning to Example 1 (with v1 = (2, 1) and v2 = (1, 2))
the following f would qualify (with c1 = 1 and c2 = 0):

0

4 1

0 3 5

4

2

1

0

Cbad is not a counterexample to my new conjecture;
computer search finds many suitable f ’s (too many!).
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Final remarks

A better question: What constraints on C and L make this new
conjecture (or my old conjecture) true in some systematic way?

Even if the conjecture as phrased fails, it may become true if we
restrict to polytopes Π and/or actions L with some special
properties.
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