h-polynomials of triangulations of flow polytopes

Karola Mészáros

(Cornell University)

h-polynomials of triangulations of flow polytopes

(and of reduction trees)

Karola Mészáros

(Cornell University)

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and h-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize *h*-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and h-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

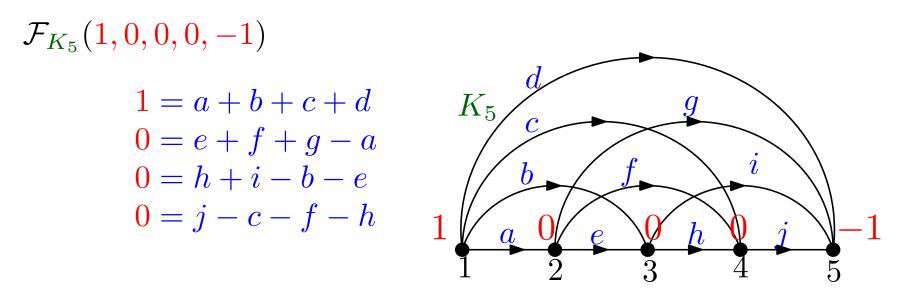
Shellings and h-polynomials of reduction trees

Nonnegativity results on reduced forms

Flow polytopes

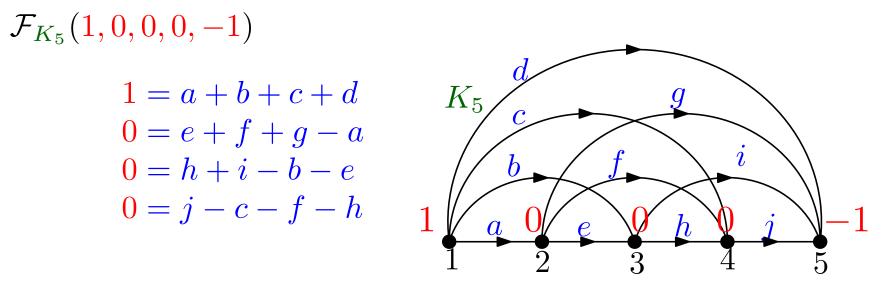
 $\mathcal{F}_{K_5}(1,0,0,0,-1)$

Flow polytopes



 $a, b, c, d, e, f, g, h, i, j \ge 0$

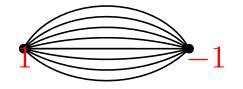
Flow polytopes



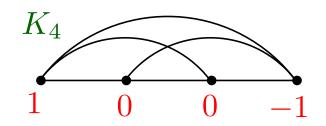
 $a, b, c, d, e, f, g, h, i, j \ge 0$

For a general graph G on the vertex set [n], with net flow $\mathbf{a} = (1, 0, \dots, 0, -1)$, the **flow polytope** of G, denoted \mathcal{F}_G , is the set of **flows** $f: E(G) \to \mathbb{R}_{\geq 0}$ such that the total flow going in at vertex 1 is one, and there is flow conservation at each of the inner vertices.

Examples of flow polytopes



simplex



An intriguing theorem

Theorem [Postnikov-Stanley]:

For a graph G on the vertex set $\{1, 2 \dots, n\}$ we have

vol $(\mathcal{F}_G(1,0,\ldots,0,-1)) = K_G(0,d_2,\ldots,d_{n-1},-\sum_{i=2}^{n-1} d_i),$

where $d_i = (\text{indegree of } i) - 1$ and K_G is the Kostant partition function.

Some interesting examples of flow polytopes

Theorem [Zeilberger 99]:

$$\operatorname{vol}(\mathcal{F}_{K_{n+1}}) = Cat(1)Cat(2) \cdots Cat(n-2).$$

Some interesting examples of flow polytopes

Theorem [Zeilberger 99]:

$$\operatorname{vol}(\mathcal{F}_{K_{n+1}}) = Cat(1)Cat(2)\cdots Cat(n-2).$$

 $\mathcal{F}_{K_{n+1}}$ is a member of a larger family of polytopes with volumes given by nice product formulas.

Some interesting examples of flow polytopes

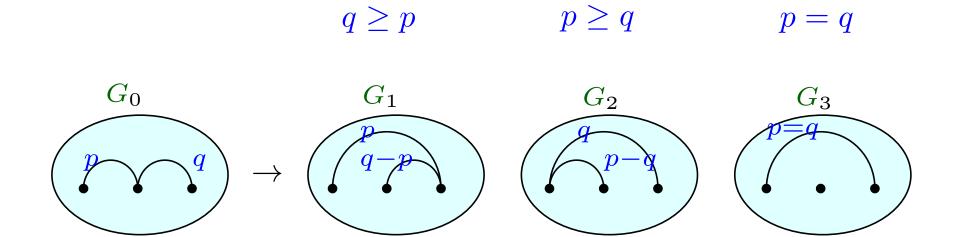
Theorem [Zeilberger 99]:

$$\operatorname{vol}(\mathcal{F}_{K_{n+1}}) = Cat(1)Cat(2)\cdots Cat(n-2).$$

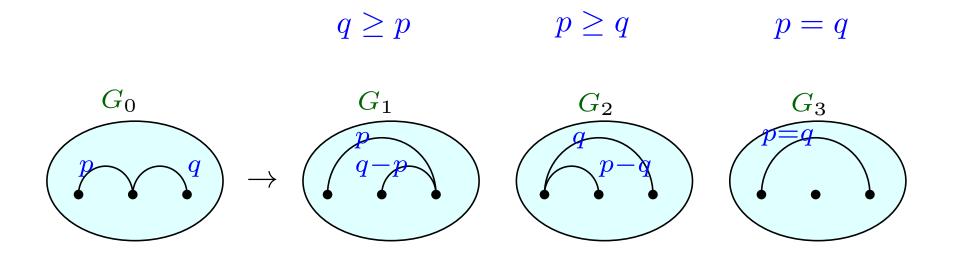
 $\mathcal{F}_{K_{n+1}}$ is a member of a larger family of polytopes with volumes given by nice product formulas.

(Think $\prod_{i=m+1}^{m+n-1} \frac{1}{2i+1} \binom{m+n+i+1}{2i}$.)

Triangulating \mathcal{F}_G

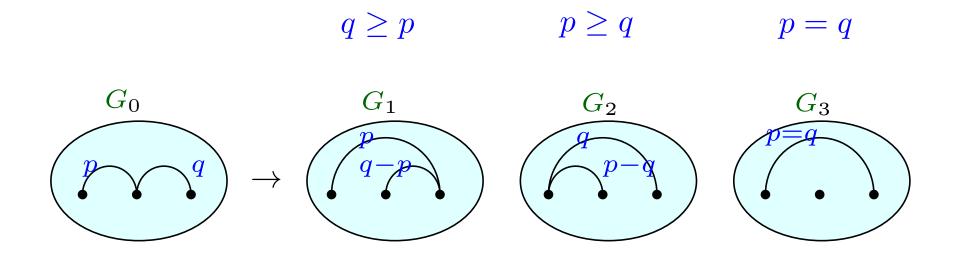


Triangulating \mathcal{F}_G



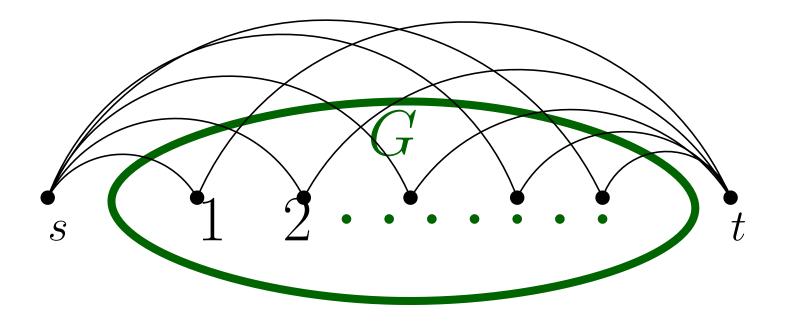
Proposition: $\mathcal{F}_{G_0} = \mathcal{F}_{G_1} \cup \mathcal{F}_{G_2}, \ \mathcal{F}_{G_1} \cap \mathcal{F}_{G_2} = \mathcal{F}_{G_3}.$

Triangulating \mathcal{F}_G



Proposition: $\mathcal{F}_{G_0} = \mathcal{F}_{G_1} \cup \mathcal{F}_{G_2}, \ \mathcal{F}_{G_1} \cap \mathcal{F}_{G_2} = \mathcal{F}_{G_3}.$

 \mathcal{F}_{G_1} or \mathcal{F}_{G_2} could be empty.



Purpose: we can simply do the reductions on Gand at the end arrive to a triangulation of $\mathcal{F}_{\widetilde{G}}$.

Background on flow polytopes

Reduction trees and reduced forms

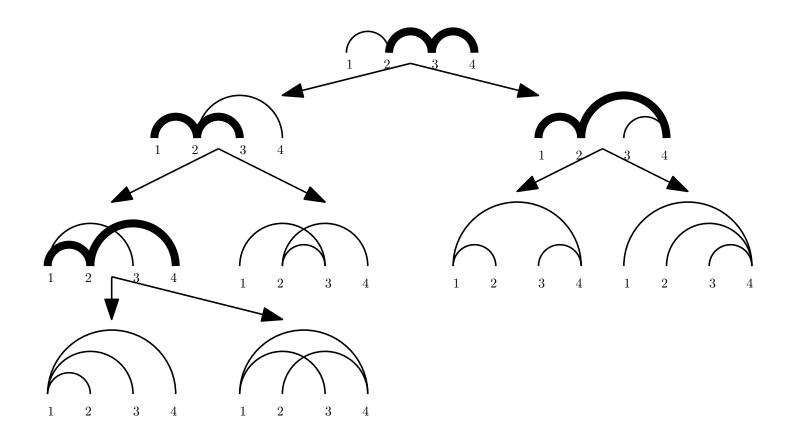
Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

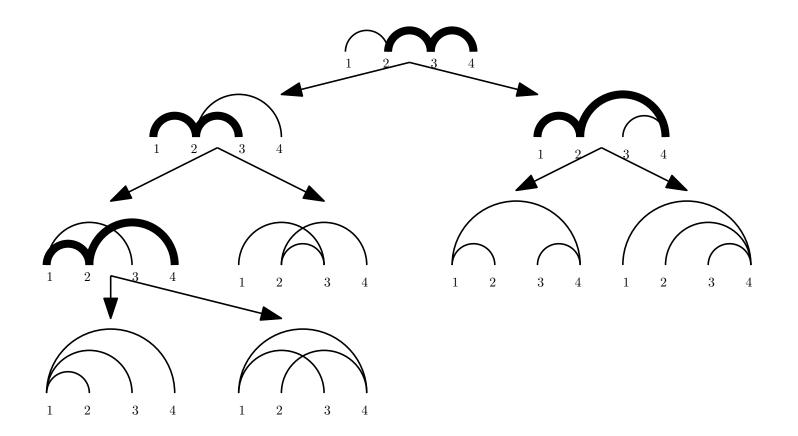
Nonnegativity results on reduced forms

Reduction tree $\mathcal{T}(G)$



A reduction tree of $G = ([4], \{(1, 2), (2, 3), (3, 4)\})$ with five leaves. The edges on which the reductions are performed are in bold.

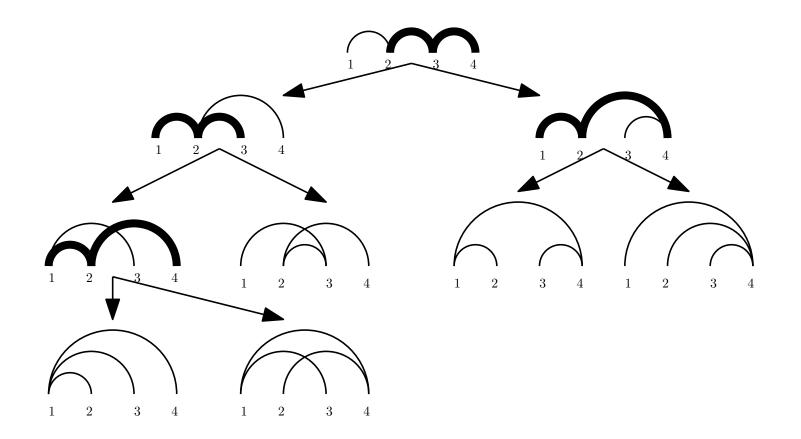
Reduction tree $\mathcal{T}(G)$



Lemma.

If the leaves are labeled by graphs $H_1, , H_k$ then the flow polytopes $\mathcal{F}_{\widetilde{H_1}}, \ldots, \mathcal{F}_{\widetilde{H_k}}$ are simplices.

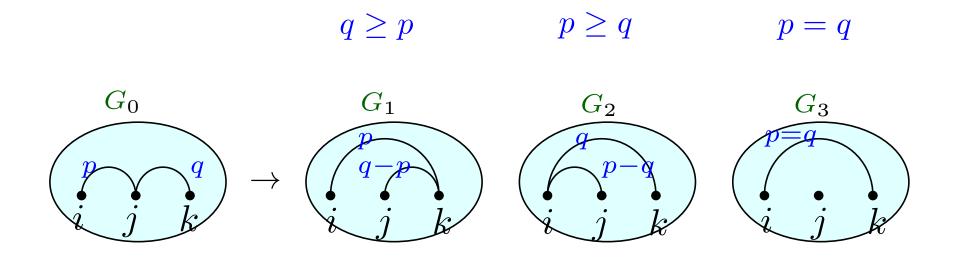
Reduction tree $\mathcal{T}(G)$



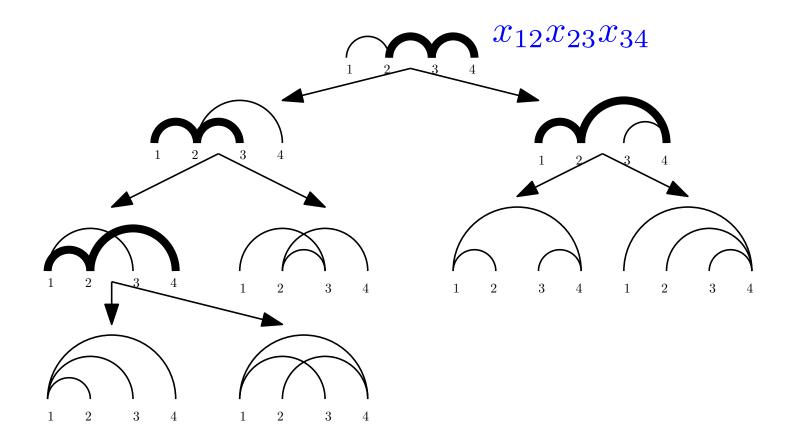
Lemma. The normalized volume of $\mathcal{F}_{\widetilde{G}}$ is equal to the

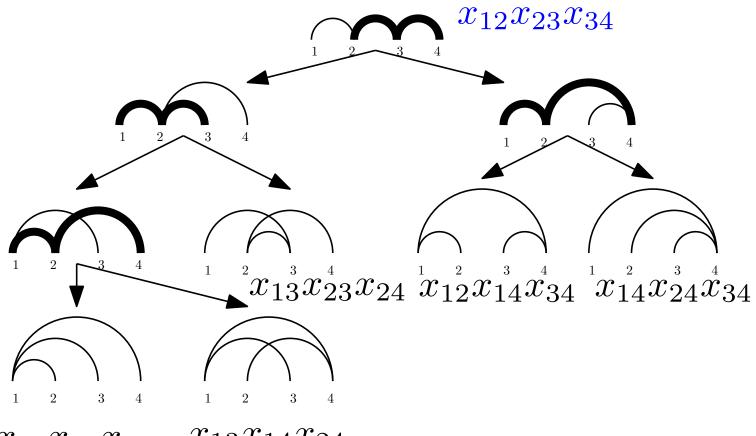
number of leaves in a reduction tree $\mathcal{T}(G)$.

Reductions in variables

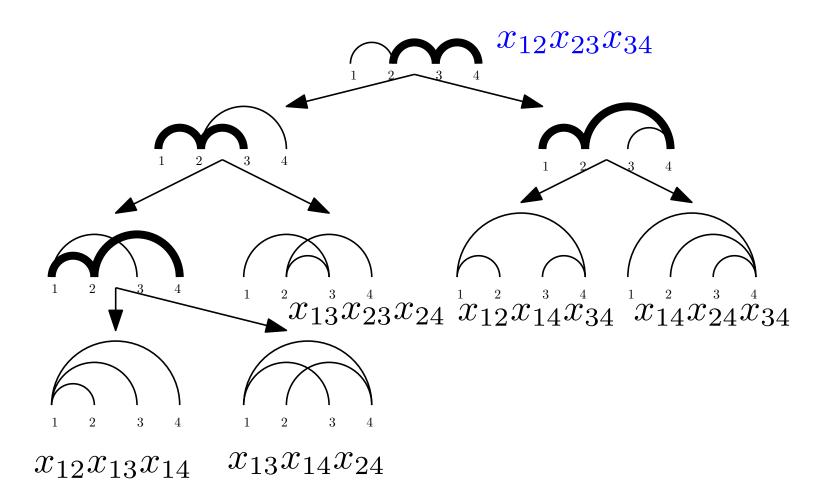


 $x_{ij}x_{jk} \to x_{jk}x_{ik} + x_{ik}x_{ij} + \beta x_{ik}$





 $x_{12}x_{13}x_{14} \quad x_{13}x_{14}x_{24}$



 $x_{12}x_{13}x_{14} + x_{13}x_{14}x_{24} + x_{13}x_{23}x_{24} + x_{12}x_{14}x_{34} + x_{14}x_{24}x_{34}$

 $(\beta = 0)$

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize *h*-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Denote by $Q_G(\beta, \mathbf{x})$ the reduced form of the monomial

 $\prod_{(i,j)\in E(G)} x_{ij}.$

Denote by $Q_G(\beta, \mathbf{x})$ the reduced form of the monomial $\prod_{(i,j)\in E(G)} x_{ij}$. Let $Q_G(\beta)$ denote the reduced form when all $x_{ij} = 1$.

Denote by $Q_G(\beta, \mathbf{x})$ the reduced form of the monomial $\prod_{(i,j)\in E(G)} x_{ij}$. Let $Q_G(\beta)$ denote the reduced form when all $x_{ij} = 1$.

Theorem. (M, 2014)

 $Q_G(\beta - 1) = h(\mathcal{T}, \beta)$

Denote by $Q_G(\beta, \mathbf{x})$ the reduced form of the monomial $\prod_{(i,j)\in E(G)} x_{ij}$. Let $Q_G(\beta)$ denote the reduced form when all $x_{ij} = 1$.

Theorem. (M, 2014)

 $Q_G(\beta - 1) = h(\mathcal{T}, \beta)$

(where \mathcal{T} is a "triangulation" of $\mathcal{F}_{ ilde{G}}$ obtained via the game)

Denote by $Q_G(\beta, \mathbf{x})$ the reduced form of the monomial $\prod_{(i,j)\in E(G)} x_{ij}$. Let $Q_G(\beta)$ denote the reduced form when all $x_{ij} = 1$.

Theorem. (M, 2014)

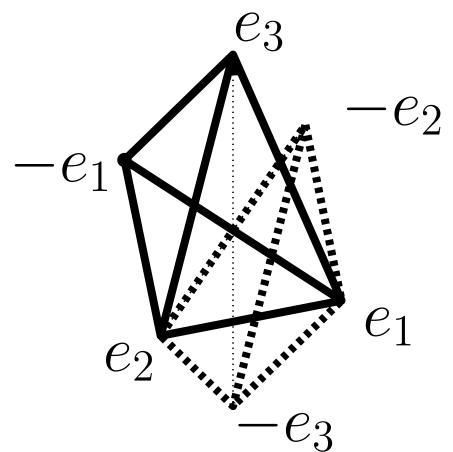
 $Q_G(\beta - 1) = h(\mathcal{T}, \beta)$

(where \mathcal{T} is a "triangulation" of $\mathcal{F}_{\tilde{G}}$ obtained via the game)

In particular the coefficients of $Q_G(\beta - 1)$ are nonnegative.

If we just play the game in any way we like, we might not get a triangulation in the sense of a simplicial complex.

If we just play the game in any way we like, we might not get a triangulation in the sense of a simplicial complex.



If we just play the game in any way we like, we might not get a triangulation in the sense of a simplicial complex.

Nevertheless, the notions of f-vectors and h-vectors still make sense.

If we just play the game in any way we like, we might not get a triangulation in the sense of a simplicial complex.

Nevertheless, the notions of f-vectors and h-vectors still make sense.

Still, we wonder:

Is there a way to play the game and get a triangulation?

Plan

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Back to where we started: last words on flow polytopes

Theorem. (M, 2014) There is a way to play the game and obtain a shellable triangulation of the flow polytope $\mathcal{F}_{\tilde{G}}$.

Theorem. (M, 2014) There is a way to play the game and obtain a shellable triangulation of the flow polytope $\mathcal{F}_{\tilde{G}}$.

A triangulation is said to be shellable, if we can order the top dimensional simplices F_1, \ldots, F_k , so that F_i , 1 < i, attaches to the preceeding simplices F_1, \ldots, F_{i-1} , on a union of its facets (at least one of them).

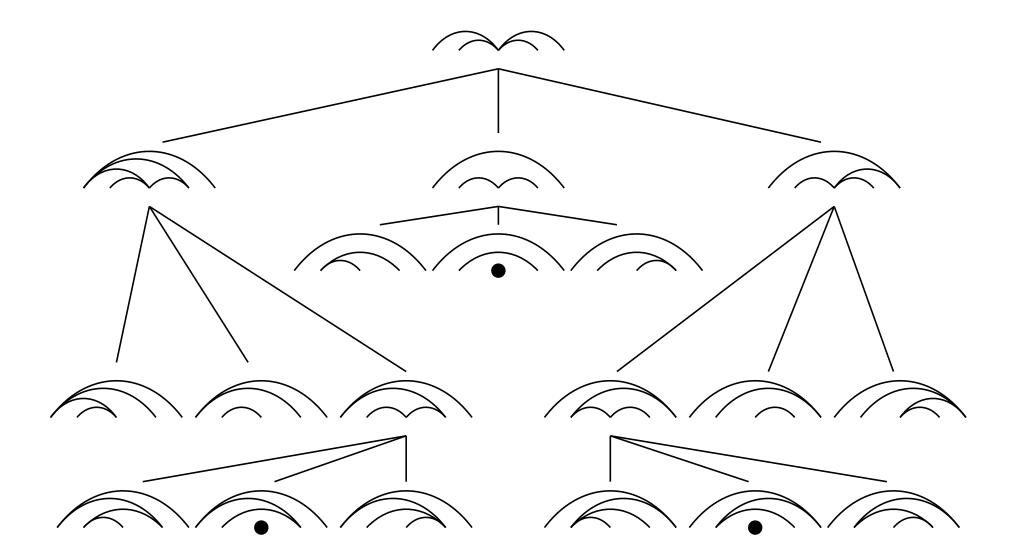
Theorem. (M, 2014) There is a way to play the game and obtain a shellable triangulation of the flow polytope $\mathcal{F}_{\tilde{G}}$.

The key is to use a special reduction order. Namely, do the reductions from left to right and always on the topmost edges.

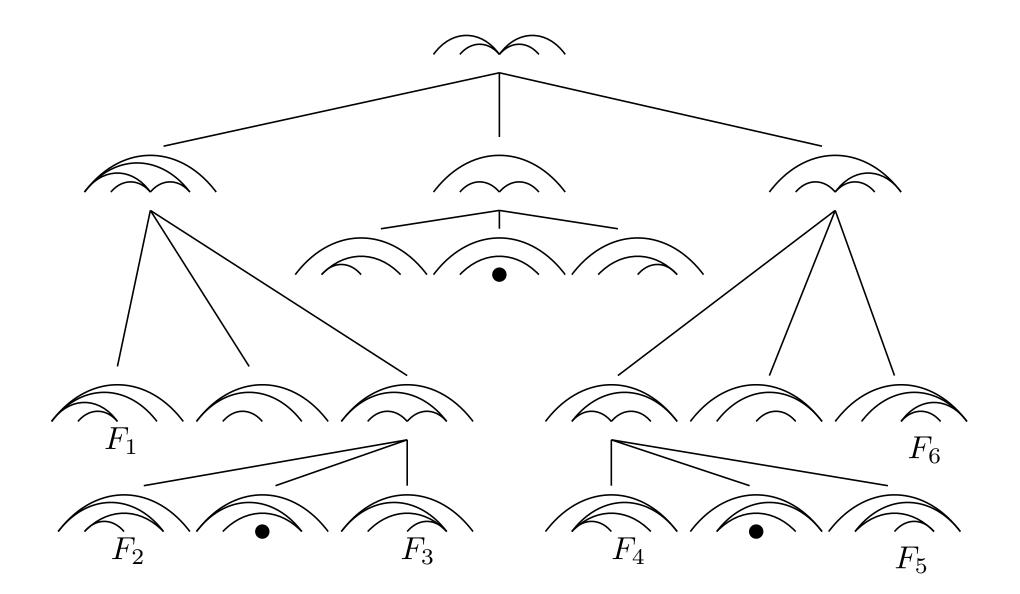
Theorem. (M, 2014) There is a way to play the game and obtain a shellable triangulation of the flow polytope $\mathcal{F}_{\tilde{G}}$.

The key is to use a special reduction order. Namely, do the reductions from left to right and always on the topmost edges. We call this special order \mathcal{O} .

Reduction tree $R_G^{\mathcal{O}}$



Reduction tree $R_G^{\mathcal{O}}$



Shelling $\mathcal{T}^{\mathcal{O}}$

Let F_1, \ldots, F_l be the full-dimensional leaves of $R_G^{\mathcal{O}}$ ordered by depth-first search order.

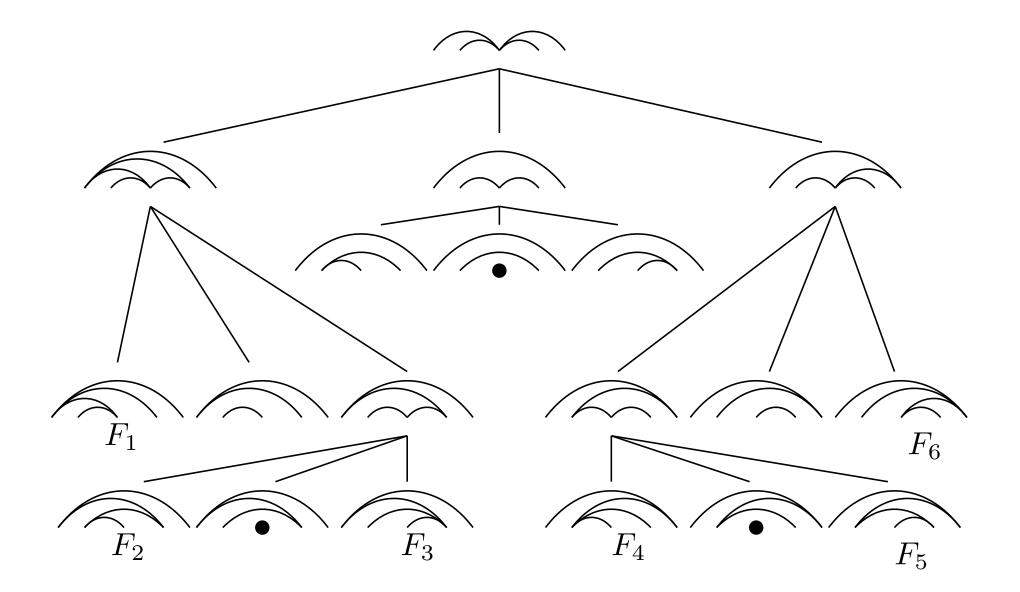
Theorem. (M, 2014) $\mathcal{F}_{\widetilde{F_1}}, \ldots, \mathcal{F}_{\widetilde{F_l}}$ is a shelling order of the triangulation $\mathcal{T}^{\mathcal{O}}$ of $\mathcal{F}_{\widetilde{G}}$.

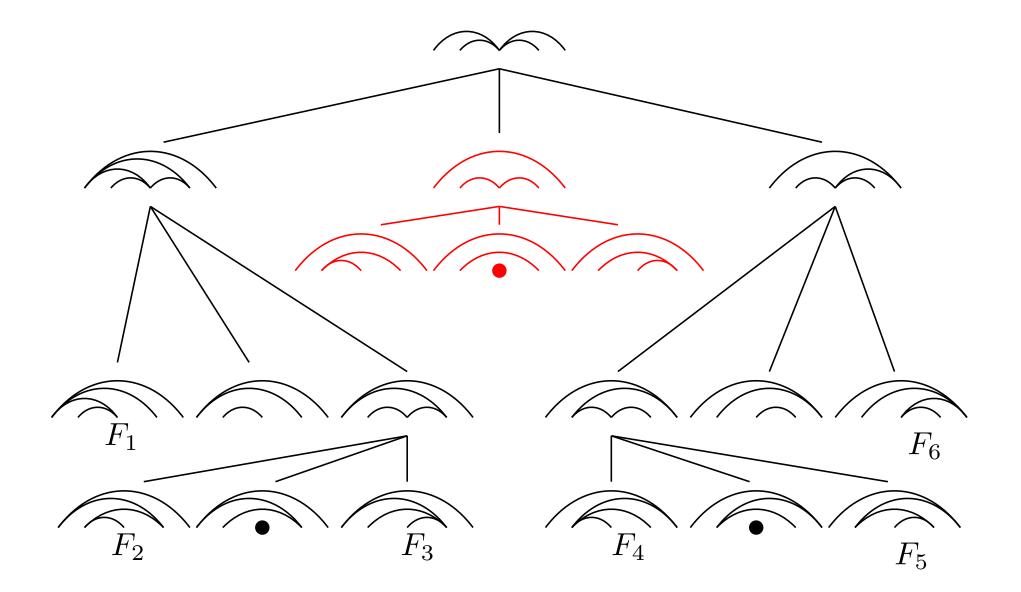
Shelling $\mathcal{T}^{\mathcal{O}}$

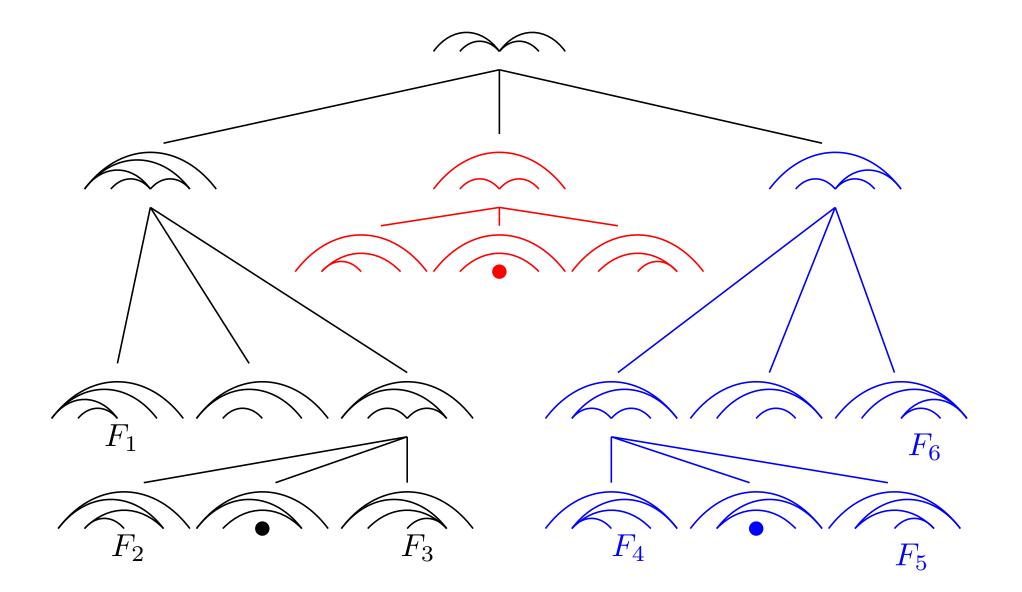
Let F_1, \ldots, F_l be the full-dimensional leaves of $R_G^{\mathcal{O}}$ ordered by depth-first search order.

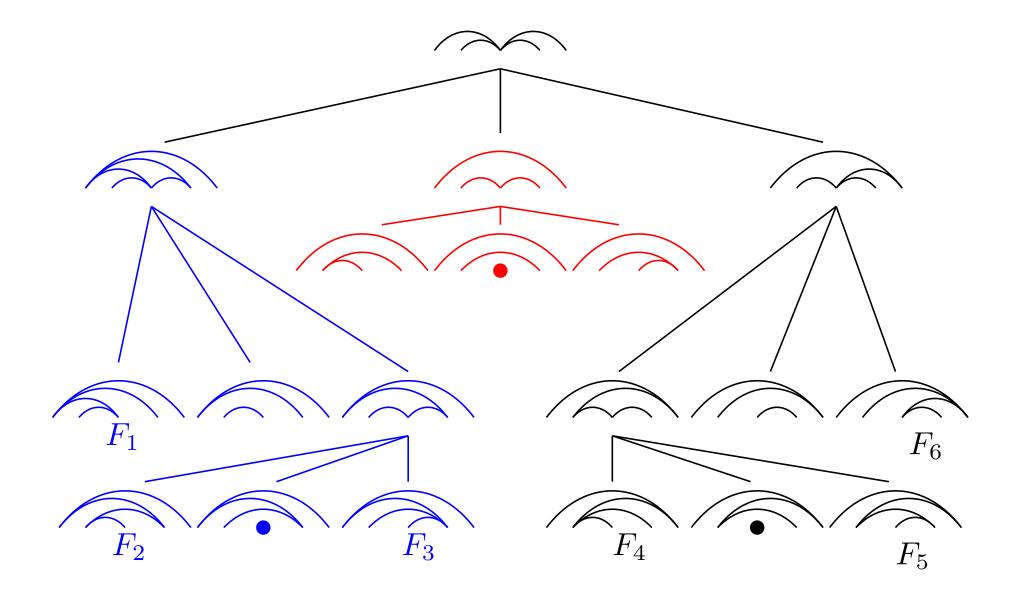
Theorem. (M, 2014) $\mathcal{F}_{\widetilde{F_1}}, \ldots, \mathcal{F}_{\widetilde{F_l}}$ is a shelling order of the triangulation $\mathcal{T}^{\mathcal{O}}$ of $\mathcal{F}_{\widetilde{G}}$.

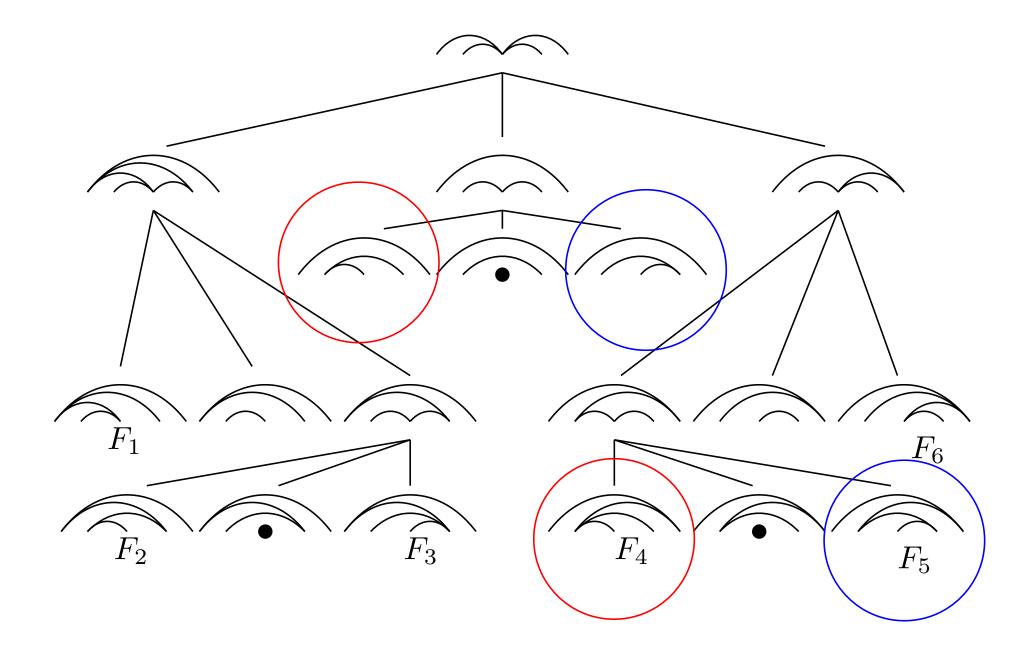
The idea of proof is weak embeddability of reduction trees.

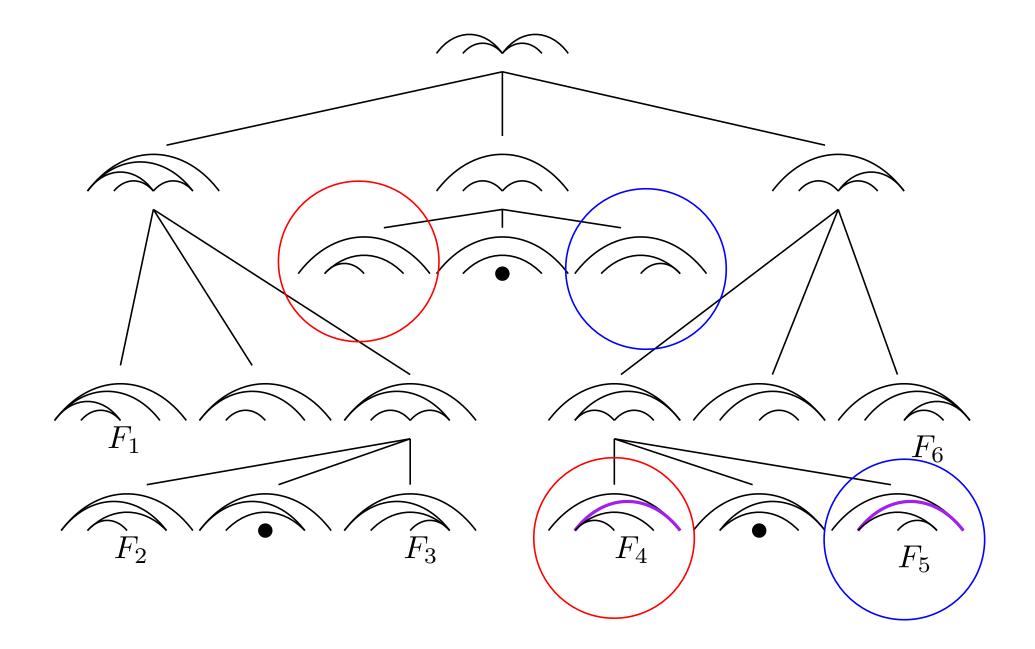


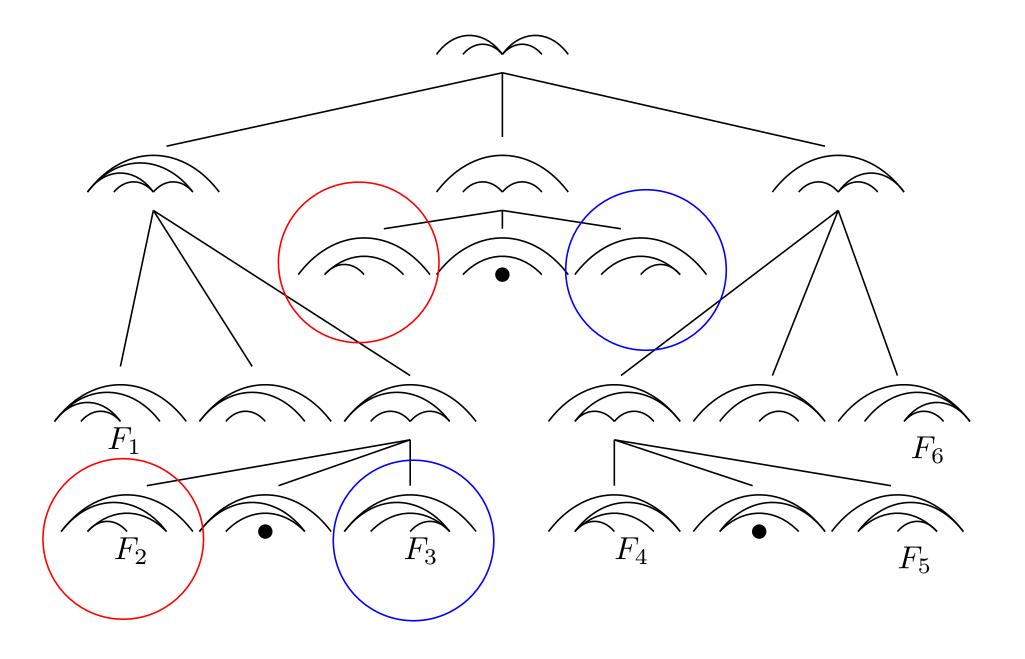


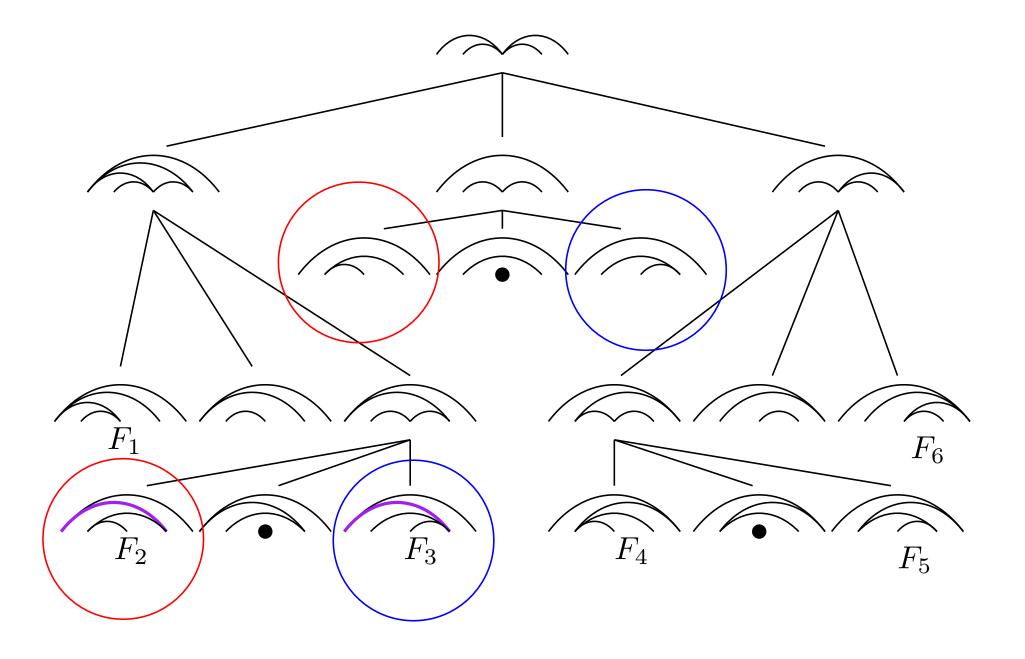




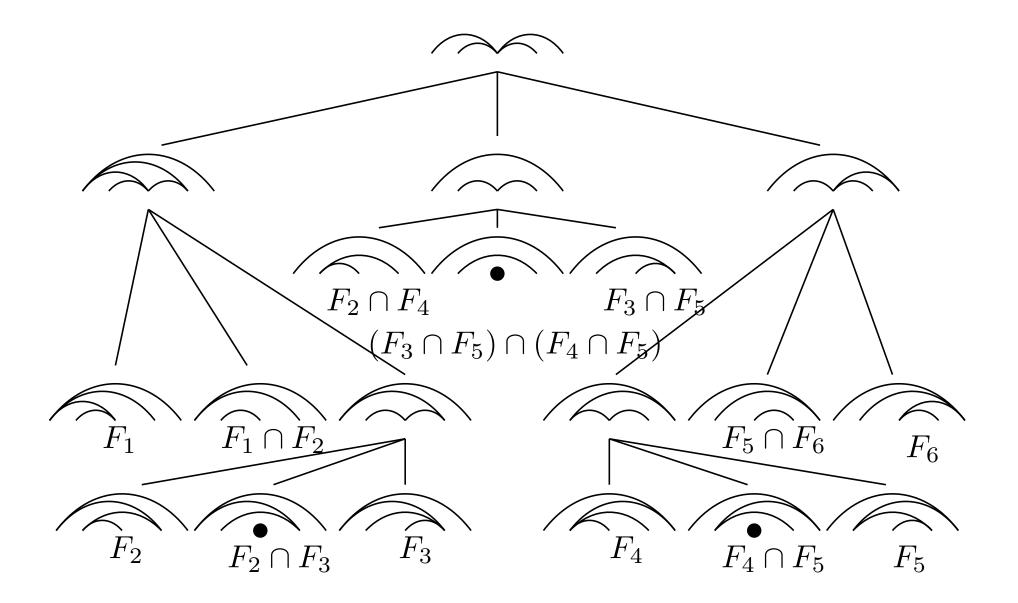








Leaves of $R_G^{\mathcal{O}}$



Leaves of $R_G^{\mathcal{O}}$

Theorem. (M, 2014)

Let F_1, \ldots, F_l be the full-dimensional leaves of $R_G^{\mathcal{O}}$ ordered by depth-first search order. Let

$$\{Q_1^i, \dots, Q_{f(i)}^i\} = \{F_i \cap F_j \mid 1 \le j < i, |E(F_i \cap F_j)| = |E(F_i)| - 1\}.$$

Then

$$\sum_{i=1}^{l} \prod_{j=1}^{f(i)} (F_i + Q_j^i)$$

is the formal sum of the set of the leaves of $R_G^{\mathcal{O}}$, where the product of graphs is their intersection. If f(i) = 0 we define $\prod_{i=1}^{f(i)} (F_i + Q_i^i) = F_i$.

Plan

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Back to where we started: last words on flow polytopes

The idea of proof for the previous theorem is to define a notion alike shellability for reduction trees.

The idea of proof for the previous theorem is to define a notion alike shellability for reduction trees.

Given a full dimensional leaf L of R_G , H is a preceeding facet of L if

The idea of proof for the previous theorem is to define a notion alike shellability for reduction trees.

Given a full dimensional leaf L of R_G , H is a preceeding facet of L if

1. H is a leaf before L in R_G in depth-first search order

The idea of proof for the previous theorem is to define a notion alike shellability for reduction trees.

Given a full dimensional leaf L of R_G , H is a preceeding facet of L if

1. H is a leaf before L in R_G in depth-first search order

2. $E(H) \subset E(L)$ and |E(H)| = |E(L)| - 1

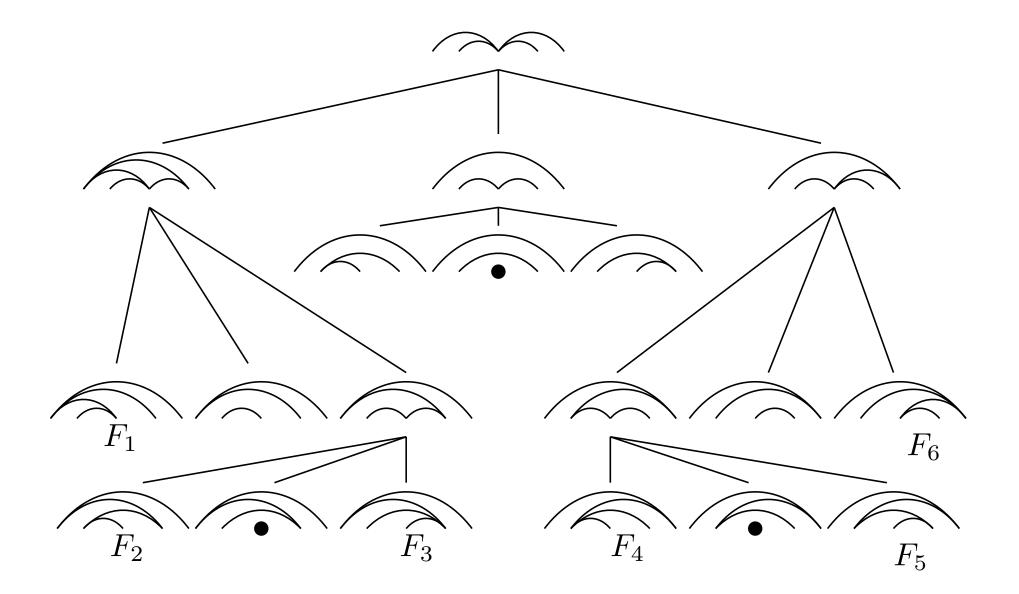
The idea of proof for the previous theorem is to define a notion alike shellability for reduction trees.

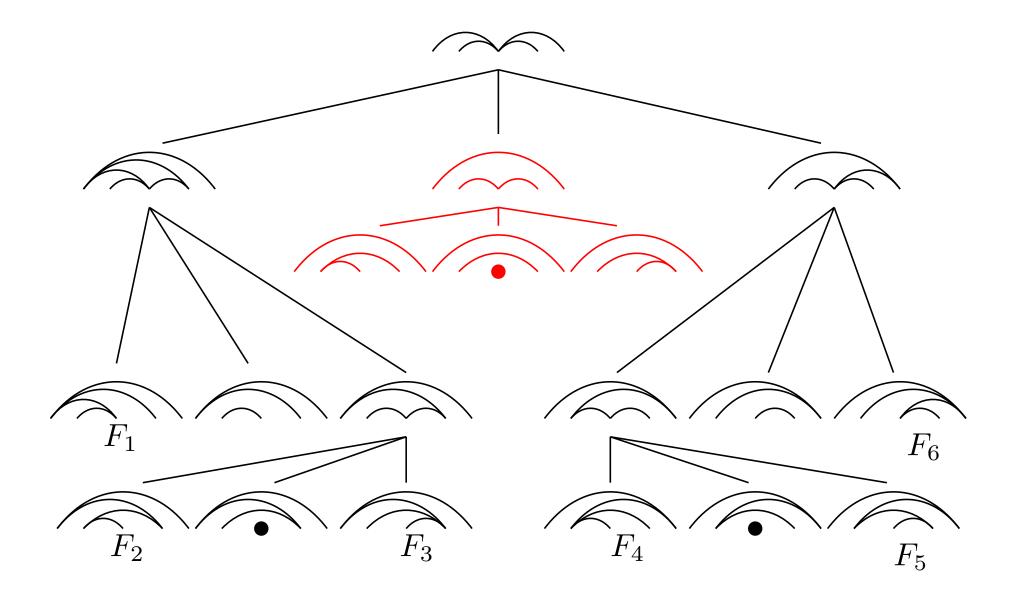
Given a full dimensional leaf L of R_G , H is a preceeding facet of L if

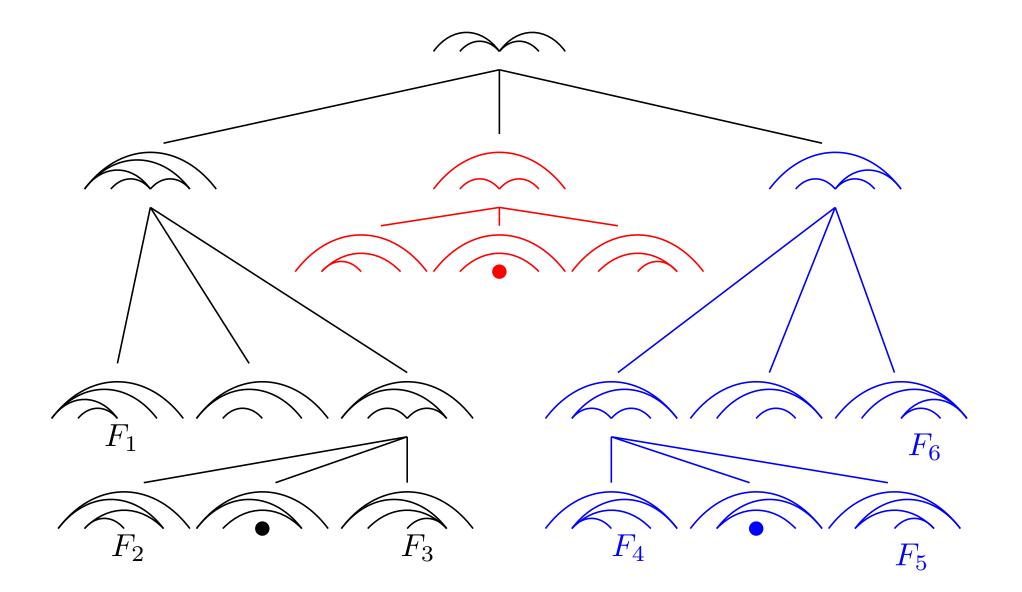
1. H is a leaf before L in R_G in depth-first search order

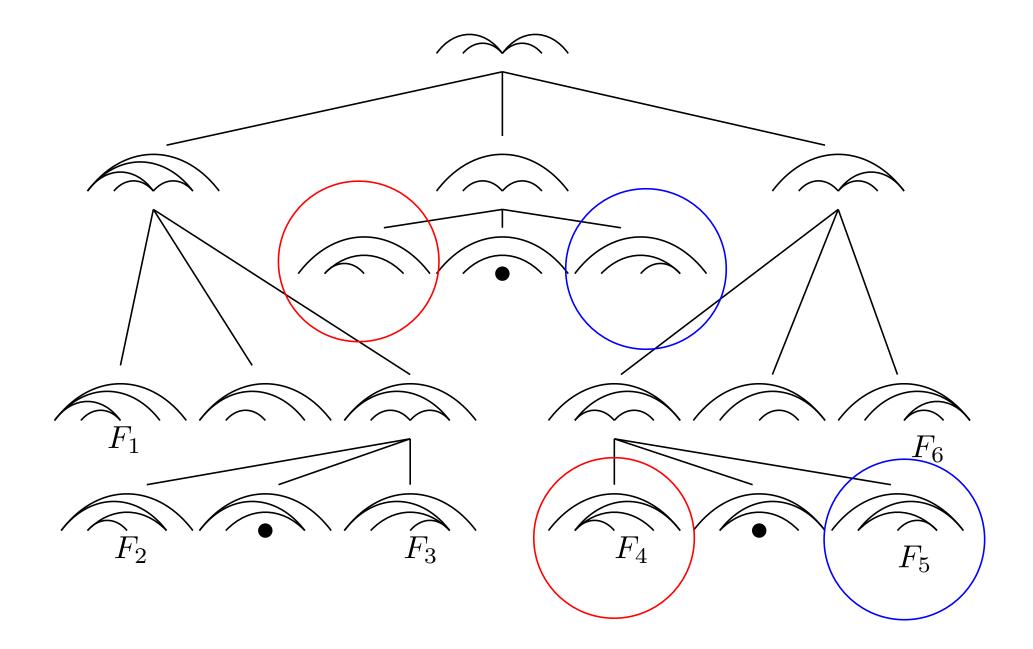
2. $E(H) \subset E(L)$ and |E(H)| = |E(L)| - 1

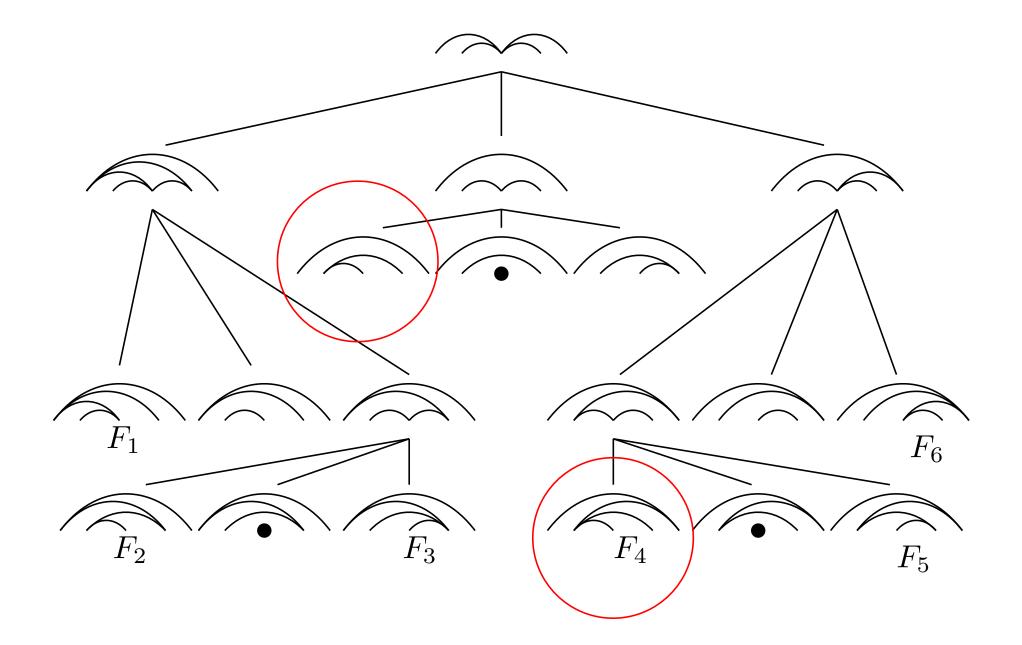
3. *

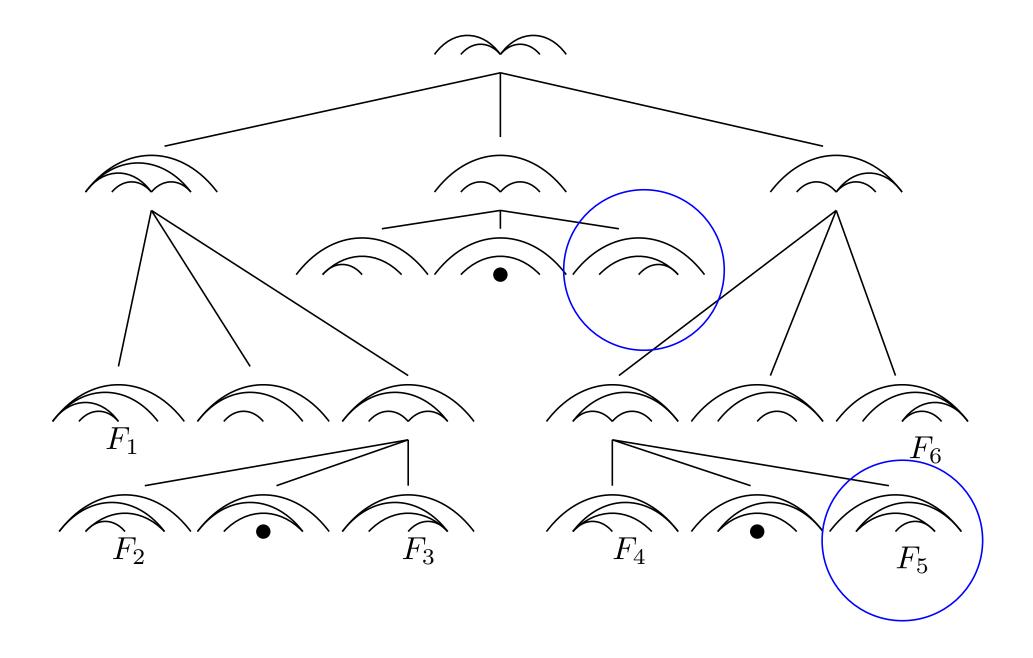




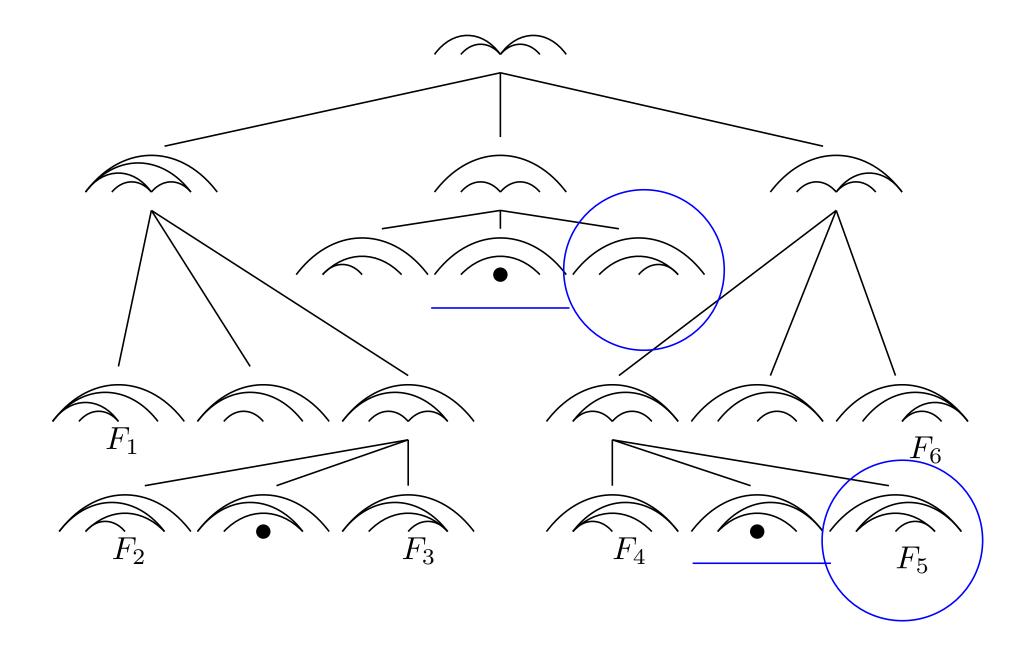




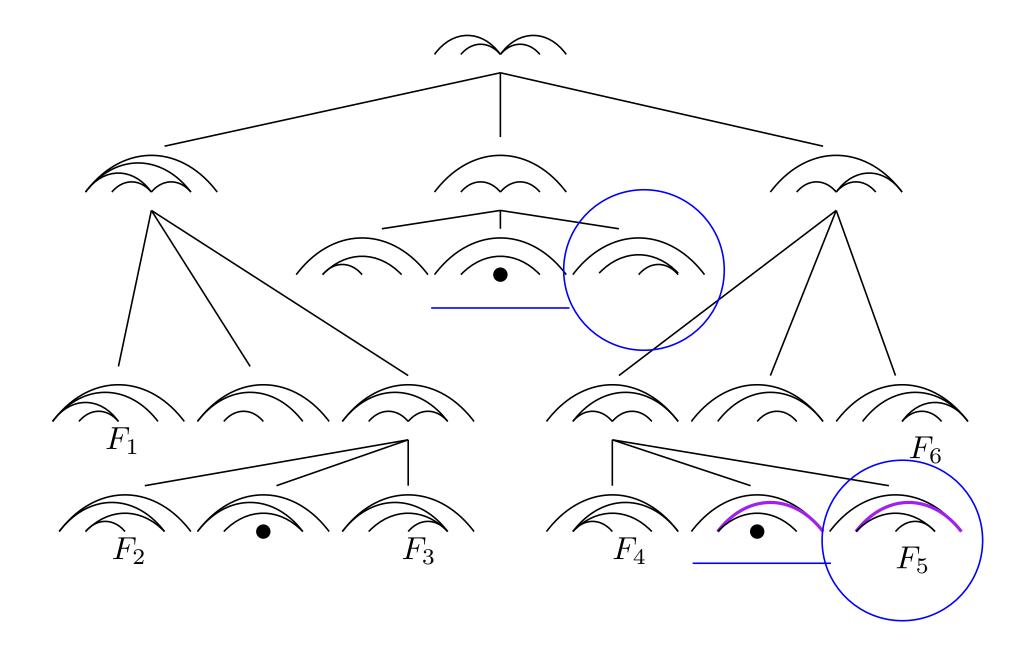




Strong embeddable reduction tree $R_G^{\mathcal{O}}$



Strong embeddable reduction tree $R_G^{\mathcal{O}}$



Define the h-polynomial of a reduction tree R_G as

$$h(R_G,\beta) = \sum_{i=0}^{\infty} s_i \beta^i,$$

where s_i is the number of full dimensional leaves L of R_G with exactly i preceding facets.

Define the h-polynomial of a reduction tree R_G as

$$h(R_G,\beta) = \sum_{i=0}^{\infty} s_i \beta^i,$$

where s_i is the number of full dimensional leaves L of R_G with exactly i preceding facets.

All above can also be defined for partial reduction trees R_G^p , or alternatively reduction trees in other algebras.

Define the h-polynomial of a reduction tree R_G as

$$h(R_G,\beta) = \sum_{i=0}^{\infty} s_i \beta^i,$$

where s_i is the number of full dimensional leaves L of R_G with exactly i preceding facets.

All above can also be defined for partial reduction trees R_G^p , or alternatively reduction trees in other algebras.

Theorem. (M, 2014) For strong embeddable R_G^p we have

$$Q_{R_G^p}(\beta - 1) = h(R_G^p, \beta)$$

Plan

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and h-polynomials of reduction trees

Nonnegativity results on reduced forms

Back to where we started: last words on flow polytopes

Reduced forms are shifted *h*-polynomials

Theorem. (M, 2014) For strong embeddable R_G^p we have

$$Q_{R^p_G}(\mathfrak{b}-1) = h(R^p_G, \mathfrak{b})$$

Reduced forms are shifted *h*-polynomials

Theorem. (M, 2014) For strong embeddable R_G^p we have

 $Q_{R^p_G}(\mathfrak{b}-1) = h(R^p_G, \mathfrak{b})$

Corollary. (M, 2014) For strong embeddable R_G^p the coefficients of $Q_{R_G^p}(\mathfrak{b}-1)$ are nonnegative.

Reduced forms are shifted *h*-polynomials

Theorem. (M, 2014) For strong embeddable R_G^p we have

 $Q_{R^p_G}(\mathfrak{b}-1) = h(R^p_G, \mathfrak{b})$

Corollary. (M, 2014) For strong embeddable R_G^p the coefficients of $Q_{R_G^p}(\mathfrak{b}-1)$ are nonnegative.

Generalizations of the above theorem and corollary can be used to address a nonnegativity conjecture of Kirillov.

Plan

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and *h*-polynomials of reduction trees

Nonnegativity results on reduced forms

Back to where we started: last words on flow polytopes

Recall that the motivation for the definitions of weak and strong embeddability was the shellable triangulation $\mathcal{T}^{\mathcal{O}}$ obtained from $R_G^{\mathcal{O}}$.

... one wonders if it is regular.

...one wonders if it is regular.

Question: Is $\mathcal{T}^{\mathcal{O}}$ regular?

...one wonders if it is regular.

Question: Is $\mathcal{T}^{\mathcal{O}}$ regular?

(I am not sure about that, but...)

... one wonders if it is regular.

Question: Is $\mathcal{T}^{\mathcal{O}}$ regular?

(I am not sure about that, but... I know something else)

The something else

Theorem. (M, 2014) There are ways to play the game and obtain regular and flag triangulations of the flow polytope $\mathcal{F}_{\tilde{G}}$.

The something else

Theorem. (M, 2014) There are ways to play the game and obtain regular and flag triangulations of the flow polytope $\mathcal{F}_{\tilde{G}}$.

This result builds on work of Danilov-Karzanov-Koshevoy.

Happy birthday, Richard!