
h-polynomials of triangulations of flow polytopes

Karola Mészáros
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Flow polytopes

a

b

c

d

e h j

f

g

i

1 2 3 4 5

1 = a+ b+ c+ d
0 = e+ f + g − a
0 = h+ i− b− e
0 = j − c− f − h

K5

1 0 0 0 −1

For a general graph G on the vertex set [n], with net flow
a = (1, 0, . . . , 0,−1), the flow polytope of G, denoted FG, is the set of
flows f : E(G)→ R≥0 such that the total flow going in at vertex 1 is
one, and there is flow conservation at each of the inner vertices.

FK5
(1, 0, 0, 0,−1)

a, b, c, d, e, f, g, h, i, j ≥ 0



Examples of flow polytopes

1 −1

K4

1 0 −10

simplex



An intriguing theorem

Theorem [Postnikov-Stanley]:
For a graph G on the vertex set {1, 2 . . . , n} we have

vol (FG(1, 0, . . . , 0,−1)) = KG(0, d2, . . . , dn−1,−
∑n−1

i=2 di),

where di = (indegree of i)− 1 and KG is the Kostant partition function.
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Some interesting examples of flow polytopes

Theorem [Zeilberger 99]:

vol(FKn+1
) =Cat(1)Cat(2)· · ·Cat(n− 2).

FKn+1
is a member of a larger family of polytopes with

volumes given by nice product formulas.

(Think
∏m+n−1

i=m+1
1

2i+1

(
m+n+i+1

2i

)
.)
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Proposition:
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Triangulating FG

p q
p q
q−p p−q

p=q

q ≥ p p ≥ q p = q

→

G0 G1 G2 G3

FG1 or FG2 could be empty.

Proposition:
FG0 = FG1 ∪ FG2 , FG1 ∩ FG2 = FG3 .



G̃ = G with s and t

Purpose: we can simply do the reductions on G

and at the end arrive to a triangulation of FG̃.

s t

G

1 2
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Reduction tree T (G)

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 41 2 3 41 2 3 4

1 2 3 4 1 2 3 4

A reduction tree of G = ([4], {(1, 2), (2, 3), (3, 4)}) with

five leaves. The edges on which the reductions are

performed are in bold.



Reduction tree T (G)

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 41 2 3 41 2 3 4

1 2 3 4 1 2 3 4

If the leaves are labeled by graphs H1, ,Hk then the flow

Lemma.

polytopes F
H̃1
, . . . ,F

H̃k
are simplices.



Reduction tree T (G)

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 41 2 3 41 2 3 4

1 2 3 4 1 2 3 4

Lemma. The normalized volume of FG̃ is equal to the

number of leaves in a reduction tree T (G).



Reductions in variables

p q
p q
q−p p−q

p=q

q ≥ p p ≥ q p = q

→

G0 G1 G2 G3

xijxjk → xjkxik + xikxij + βxik

i j k i j k i j k i j k
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Reduced form

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 41 2 3 41 2 3 4

1 2 3 4 1 2 3 4

x12x13x14 x13x14x24

x13x23x24 x12x14x34 x14x24x34

x12x13x14 x13x14x24 x13x23x24 x12x14x34 x14x24x34+ + + +

(β = 0)

x12x23x34



Plan

Background on flow polytopes

Reduction trees and reduced forms

Reduced forms generalize h-polynomials of triangulations

Canonical triangulations of flow polytopes

Shellings and h-polynomials of reduction trees

Nonnegativity results on reduced forms

Back to where we started: last words on flow polytopes



Reduced form

Denote by QG(β,x) the reduced form of the monomial∏
(i,j)∈E(G) xij .



Reduced form

Denote by QG(β,x) the reduced form of the monomial∏
(i,j)∈E(G) xij . Let QG(β) denote the reduced form

when all xij = 1.



Reduced form

Denote by QG(β,x) the reduced form of the monomial∏
(i,j)∈E(G) xij . Let QG(β) denote the reduced form

when all xij = 1.

Theorem. (M, 2014)

QG(β − 1) = h(T , β)



Reduced form

Denote by QG(β,x) the reduced form of the monomial∏
(i,j)∈E(G) xij . Let QG(β) denote the reduced form

when all xij = 1.

Theorem. (M, 2014)

QG(β − 1) = h(T , β)

(where T is a “triangulation” of FG̃ obtained via the game)



Reduced form

Denote by QG(β,x) the reduced form of the monomial∏
(i,j)∈E(G) xij . Let QG(β) denote the reduced form

when all xij = 1.

Theorem. (M, 2014)

QG(β − 1) = h(T , β)

(where T is a “triangulation” of FG̃ obtained via the game)

In particular the coefficients of QG(β − 1) are nonnegative.
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Why “triangulation”?

If we just play the game in any way we like, we might not

get a triangulation in the sense of a simplicial complex.

Nevertheless, the notions of f -vectors and h-vectors still

make sense.

Still, we wonder:

Is there a way to play the game and get a triangulation?
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facets (at least one of them).
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Yes, triangulation!

Theorem. (M, 2014) There is a way to play the game and

obtain a shellable triangulation of the flow polytope FG̃.

The key is to use a special reduction order. Namely, do the

reductions from left to right and always on the topmost

edges. We call this special order O.
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Shelling T O

Let F1, . . . , Fl be the full-dimensional leaves of ROG ordered by

depth-first search order.

F
F̃1
, . . . ,F

F̃l
is a shelling order of the triangulation T O of FG̃.

Theorem. (M, 2014)



Shelling T O

Let F1, . . . , Fl be the full-dimensional leaves of ROG ordered by

depth-first search order.

F
F̃1
, . . . ,F

F̃l
is a shelling order of the triangulation T O of FG̃.

Theorem. (M, 2014)

The idea of proof is weak embeddability of reduction trees.
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Weak embeddable reduction tree RO
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Leaves of RO
G

F1

F2 F3 F4 F5

F6
F1 ∩ F2

F2 ∩ F3

F2 ∩ F4 F3 ∩ F5

F4 ∩ F5

F5 ∩ F6

(F3 ∩ F5) ∩ (F4 ∩ F5)



Leaves of RO
G

Theorem. (M, 2014)

Let F1, . . . , Fl be the full-dimensional leaves of ROG ordered by

Let

{Qi
1, . . . , Q

i
f(i)} = {Fi ∩ Fj | 1 ≤ j < i, |E(Fi ∩ Fj)| = |E(Fi)| − 1}.

Then ∑l
i=1

∏f(i)
j=1(Fi +Qi

j)

is the formal sum of the set of the leaves of ROG , where the

product of graphs is their intersection. If f(i) = 0 we define∏f(i)
j=1(Fi +Qi

j) = Fi.

depth-first search order.
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“Shellable” reduction trees

The idea of proof for the previous theorem is to define a

Given a full dimensional leaf L of RG, H is a preceeding

facet of L if

1. H is a leaf before L in RG in depth-first search order

2. E(H) ⊂ E(L) and |E(H)| = |E(L)| − 1

3. ∗

notion alike shellability for reduction trees.
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h-polynomials of reduction trees

Define the h-polynomial of a reduction tree RG as

h(RG, β) =
∑∞

i=0 siβ
i,

where si is the number of full dimensional leaves L of RG

with exactly i preceeding facets.

All above can also be defined for partial reduction trees Rp
G,

or alternatively reduction trees in other algebras.

Theorem. (M, 2014) For strong embeddable Rp
G we have

QRp
G
(β − 1) = h(Rp

G, β)
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Reduced forms are shifted h-polynomials

Theorem. (M, 2014) For strong embeddable Rp
G we have

QRp
G
(b− 1) = h(Rp

G, b)

Corollary. (M, 2014) For strong embeddable Rp
G the

coefficients of QRp
G
(b− 1) are nonnegative.

Generalizations of the above theorem and corollary can be

used to address a nonnegativity conjecture of Kirillov.
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If a triangulation is shellable...

Recall that the motivation for the definitions of weak and

strong embeddability was the shellable triangulation T O

obtained from ROG .
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If a triangulation is shellable...

...one wonders if it is regular.

Question: Is T O regular?

(I am not sure about that, but... I know something else)



The something else

Theorem. (M, 2014) There are ways to play the game and

obtain regular and flag triangulations of the flow polytope FG̃.



The something else

Theorem. (M, 2014) There are ways to play the game and

obtain regular and flag triangulations of the flow polytope FG̃.

This result builds on work of Danilov-Karzanov-Koshevoy.



Happy birthday, Richard!


