Cutting polytopes

Nan Li

June 24, 2014 @ Stanley 70

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cutting polytopes

Plan of the talk:

- 1. first example: hypersimplices (slices of the cube):
 - volume,
 - Ehrhart *h*-vector,
 - *f*-vector;
- 2. second example: edge polytopes;
- 3. general cutting-polytope framework.

Hypersimplex

The (k, n)th hypersimplex $(0 \le k < n)$ is

$$\Delta_{k,n} = \{ \mathbf{x} \in [0,1]^n \mid k \le x_1 + \dots + x_n \le k+1 \}.$$

For example: $\Delta_{k,3}$

For any *n*-dimensional polytope \mathcal{P} , its **normalized volume**: $nvol(\mathcal{P}) = n! vol(\mathcal{P})$. E.g., the unit cube $C = [0, 1]^n$ has nvol(C) = n!.

Normalized volume of $\Delta_{k,n}$

Theorem (Laplace)

nvol $\Delta_{k,n} = \#\{w \in \mathfrak{S}_n \mid des(w) = k\}$, which provides a refinement of $nvol([0, 1]^n)$.

Stanley gave a bijective proof in 1977 (the shortest paper).

Example

 $nvol(\Delta_{1,3}) = 4$, and $S_3 = \{123, 213, 312, 132, 231, 321\}.$

Ehrhart *h*-vector

 $\mathcal{P} \subset \mathbb{R}^N$: an *n*-dimensional integral polytope. E.g., for the unit square, we have $\#(r\mathcal{P} \cap \mathbb{Z}^2) = (r+1)^2$, for $r \in \mathbb{P}$.

• Ehrhart polynomial: $i(P, r) = \#(rP \cap \mathbb{Z}^N)$.

$$\sum_{r\geq 0} i(\mathcal{P},r)t^r = \frac{h(t)}{(1-t)^{n+1}}$$

- h-polynomial: $h(t) = h_0 + h_1 t + \cdots + h_n t^n$
- h-vector: (h_0, \ldots, h_n) . $h_i \in \mathbb{Z}_{\geq 0}$ (Stanley).

$$\sum_{i=0}^n h_i = \operatorname{nvol}(\mathcal{P}).$$

Ehrhart *h*-vector

Ehrhart *h*-vector of \mathcal{P} provides a refinement of its normalized volume. For example,

- for the unit cube $[0,1]^n$, $h_i = \#\{w \in \mathfrak{S}_n \mid \operatorname{des}(w) = i\};$
- for the hypersimplex nvol $\Delta_{k,n} = \#\{w \in \mathfrak{S}_n \mid des(w) = k\}$. $h_i = ?$

Key point (Stanley): study the half-open hypersimplex instead of the hypersimplex.

Definition

The half-open hypersimplex $\Delta'_{k,n}$ is defined as: $\Delta'_{1,n} = \Delta_{1,n}$ and if k > 1,

$$\Delta'_{k,n} = \{ \mathbf{x} \in [0,1]^n \mid k < x_1 + \dots + x_n \le k+1 \}.$$

Ehrhart *h*-vector of the half-open hypersimplex

Let
$$exc(w) = \#\{i \mid w(i) > i\}$$
, for any $w \in \mathfrak{S}_n$. For $\Delta'_{k,n}$,
Theorem (L. 2012, conjectured by Stanley)
 $h_i = \#\{w \in \mathfrak{S}_n \mid exc(w) = k \text{ and } des(w) = i\}.$

Example						
W	123	132	213	231	312	321
des	0	1	1	1	1	2
exc	0	1	1	2	1	1

• for
$$\Delta'_{0,3}$$
, $k = 0$, $h(t) = 1$;

• for
$$\Delta'_{1,3}$$
, $k = 1$, $h(t) = 3t + t^2$;

• for
$$\Delta'_{2,3}$$
, $k = 2$, $h(t) = t$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Ehrhart *h*-vector of the half-open hypersimplex Equivalently, the *h*-polynomial of $\Delta'_{k,n}$ is

$$\sum_{\substack{w \in \mathfrak{S}_n \\ \exp(w) = k}} t^{\operatorname{des}(w)}$$

Two proofs:

- generating functions, based on a result by Foata and Han;
- by a unimodular shellable triangulation, and

Theorem (Stanley, 1980)

Assume an integral \mathcal{P} has a shellable unimodular triangulation Γ . For each simplex $\alpha \in \Gamma$, let $\#(\alpha)$ be its shelling number. Then h-polynomial of \mathcal{P} is

$$\sum_{\alpha \in \Gamma} t^{\#(\alpha)}$$

f-vector of the half-open hypersimplex

Let $f'_{j}^{(n,k)}$ denote the number of *j*-faces of $\Delta'_{n,k}$. Property (Hibi, L. and Ohsugi, 2013) The sum of *f*-vectors for the half-open hypersimplex (also the *f*-vector of the hypersimplical decomposition of the unit cube) is

$$\sum_{k=0}^{n-1} f_j'^{(n,k)} = j \cdot 2^{n-j-1} \frac{n+j+2}{n+1} \cdot \binom{n+1}{j+1}.$$

Question

Connection with Chebyshev polynomials?

Fix j = 2, $\frac{1}{j} \sum_{k=0}^{n-1} f'^{(n,k)}_{j} = 1, 7, 32, 120, 400, 1232, 3584, \dots$, appears in the triangle table of coefficients of Chebyshev polynomials of the first kind (by OEIS).

General framework

For a polytope \mathcal{P} (assume convex and integral),

- decomposability can we cut it into two integral subpolytopes with the same dimension by a hyperplane (called separating hyperplane);
- 2. inheritance do the subpolytopes have the same nice properties as $\ensuremath{\mathcal{P}}$;

3. equivalence can we count or classify all the different decompositions?

Cutting edge polytopes

Definition

Let G be a connected finite graph with n vertices and edge set E(G). Then define the edge polytope for G to be

$$P_G = \operatorname{conv} \{ e_i + e_j \mid (i,j) \in E(G) \}.$$

Combinatorial and algebraic properties of P_G are studied by Ohsugi and Hibi. Based on their results, we study the following question.

Question

Is P_G decomposable or not; can we classify all the separating hyperplanes?

Decomposble edge polytopes

Property (Hibi, L. and Zhang, 2013)

Any separating hyperplanes of edge polytopes have one the following two forms: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$, with $a_i \in \{-1, 0, 1\}$, and for each pair of edge (i, j), (a_i, a_j) either

1. type I:
$$(1, 1), (-1, 1)$$
 or $(-1, -1);$

2. or type II: (1,0),(0,0) or (-1,0).

Property (Funato, L. and Shikama, 2014)

- Infinitely many graphs in each case: 1) type I not II, 2) type II not I, 3) both type I and II, 4) neither type I nor II.
- For bipartite graphs G, type I and II are equivalent.

Decomposable edge polytopes

If P_G is decomposable via a separating hyperplane H, then

•
$$P_G = P_{G_+} \cup P_{G_-}$$
 where $G = G_+ \cup G_-$;

• $P_G \cap H = P_{G_+} \cap P_{G_-} = P_{G_0}$ where $G_0 = G_+ \cap G_-$.

Property (Funato, L. and Shikama, 2014)

Characterization of decomposable G in terms of G_0 :

- *if G biparitite (both type I and type II), then G*₀ *has two connected components, both bipartite;*
- if G not bipartite, then
 - 1. if G is type I, then G_0 is a connected bipartite graph;
 - 2. if G is type II, then G₀ has two connected components, one bipartite, the other not.

Normal edge polytopes

Definition

We call an integral polytope $P \subset \mathbb{R}^d$ normal if, for all positive integers N and for all $\beta \in NP \cap \mathbb{Z}^d$, there exist β_1, \ldots, β_N belonging to $P \cap \mathbb{Z}^d$ such that $\beta = \sum_i \beta_i$.

Theorem (Hibi, L. and Zhang, 2013)

If P_G can be decomposed into $P_{G_+} \cup P_{G_-}$, then P_G is normal if and only if both P_{G_+} and P_{G_-} are normal.

General framework

Let $\ensuremath{\mathcal{P}}$ be a convex and integral polytope and not a simplex.

- 1. Can we cut it into two integral subpolytopes? E.g.,
 - edge polytopes;
 - *order polytopes, chain polytopes (Yes);
 - *Birkhoff polytopes (No).
- 2. Do the subpolytopes have the same nice properties as \mathcal{P} ?
 - Algebraic properties: normality, quadratic generation of toric ideals;
 - combinatorial properties: volume, *f*-vector, *h*-vector.
- 3. Can we count or classify all the decomposations? E.g.,
 - *cutting cubes by two hyperplanes;
 - *order polytopes and chain polytopes for some special posets.
- * In a recent work with Hibi.