Truncated Stanley symmetric functions and amplituhedron cells

Thomas Lam

June 2014

Reduced words

The symmetric group S_n is generated by $s_1, s_2, \ldots, s_{n-1}$ with relations

$$s_i^2=1$$

$$s_is_j=s_js_i \qquad \qquad \text{if } |i-j|\geq 2$$

$$s_is_{i+1}s_i=s_{i+1}s_is_{i+1}$$

A reduced word **i** for $w \in S_n$ is a sequence

$$\mathbf{i} = i_1 i_2 \cdots i_\ell \in \{1, 2, \dots, n-1\}^\ell$$

such that

$$w=s_{i_1}s_{i_2}\cdots s_{i_\ell}$$

and $\ell = \ell(w)$ is minimal.

Stanley symmetric functions

Let R(w) denote the set of reduced words of $w \in S_n$.

Definition (Stanley symmetric function)

$$F_w(x_1, x_2, \ldots) := \sum_{\mathbf{i} = i_1 i_2 \cdots i_\ell \in R(w)} \sum_{\substack{1 \le a_1 \le a_2 \le \cdots \le a_\ell \\ i_j < i_{j+1} \implies a_{j+1} > a_j}} x_{a_1} x_{a_2} \cdots x_{a_\ell}$$

The coefficient of $x_1x_2\cdots x_\ell$ in F_w is |R(w)|.

Stanley symmetric functions

Let R(w) denote the set of reduced words of $w \in S_n$.

Definition (Stanley symmetric function)

$$F_w(x_1, x_2, \ldots) := \sum_{\mathbf{i} = i_1 i_2 \cdots i_\ell \in R(w)} \sum_{\substack{1 \le a_1 \le a_2 \le \cdots \le a_\ell \\ i_j < i_{j+1} \implies a_{j+1} > a_j}} x_{a_1} x_{a_2} \cdots x_{a_\ell}$$

The coefficient of $x_1x_2\cdots x_\ell$ in F_w is |R(w)|.

Example

$$n=3$$
 and $w=w_0=321$. We have $R(w)=\{121,212\}$, so
$$F_w=(x_1x_2^2+x_1x_2x_3+\cdots)+(x_1^2x_2+x_1x_2x_3+\cdots)$$

$$=m_{21}+2m_{111}$$

$$=s_{21}$$

Symmetry and Schur-positivity

Theorem (Stanley)

 F_w is a symmetric function.

Theorem (Stanley)

Let $w_0 = n(n-1)\cdots 1$ be the longest permutation in S_n . Then

$$|R(w_0)| = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1}$$

Theorem (Edelman-Greene, Lascoux-Schützenberger)

F_w is Schur-positive.

Affine Stanley symmetric functions

The affine symmetric group \tilde{S}_n is generated by $s_0, s_1, s_2, \ldots, s_{m-1}$ with relations

$$s_i^2=1$$

$$s_is_j=s_js_i \qquad \qquad \text{if } |i-j|\geq 2$$

$$s_is_{i+1}s_i=s_{i+1}s_is_{i+1}$$

where indices are taken modulo n.

The affine Stanley symmetric function \tilde{F}_w is defined by introducing a notion of cyclically decreasing factorizations for \tilde{S}_n .

Theorem (L.)

- \tilde{F}_w is a symmetric function.
- 2 \tilde{F}_w is "affine Schur"-positive.

Postnikov's TNN Grassmannian

Take integers $1 \le k \le n$. The Grassmannian Gr(k, n) is the set of k-dimensional subspaces of \mathbb{C}^n .

$$X = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix}$$

Postnikov's TNN Grassmannian

Take integers $1 \le k \le n$. The Grassmannian Gr(k, n) is the set of k-dimensional subspaces of \mathbb{C}^n .

$$X = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix}$$

Definition (Totally nonnegative Grassmannian)

The totally nonnegative Grassmannian $Gr(k, n)_{\geq 0}$ is the locus in the real Grassmannian representable by X such that all $k \times k$ minors are nonnegative.

Also studied by Lusztig, with a different definition.

$Gr(k, n)_{\geq 0}$ is like a simplex

Let
$$k = 1$$
. Then $Gr(1, n) = \mathbb{P}^{n-1}$ and

$$\mathrm{Gr}(1,n)_{\geq 0}=\{(a_1,a_2,\ldots,a_n)
eq \mathbf{0}\mid a_i\in\mathbb{R}_{\geq 0}\}$$
 modulo scaling by $\mathbb{R}_{>0}$

which can be identified with the simplex

$$\Delta_{n-1} := \{(a_1, a_2, \dots, a_n) \mid a_i \in [0, 1] \text{ and } a_1 + a_2 + \dots + a_n = 1\}.$$

Polytopes and amplituhedra

A convex polytope in \mathbb{R}^d with vertices v_1, v_2, \dots, v_n is the image of a simplex

$$\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_n) \subset \mathbb{R}^{n+1}$$

under a projection map $Z: \mathbb{R}^n \to \mathbb{R}^d$ where

$$Z(e_i) = v_i$$
.

Definition (Arkani-Hamed and Trnka's amplituhedron)

An amplituhedron A(k,n,d) in $\operatorname{Gr}(k,d)$ is the image of $\operatorname{Gr}(k,n)_{\geq 0}$ under a (positive) projection map $Z:\mathbb{R}^n\to\mathbb{R}^d$ inducing $Z_{\operatorname{Gr}}:\operatorname{Gr}(k,n)\to\operatorname{Gr}(k,d)$.

(Caution: Z_{Gr} is not defined everywhere.)

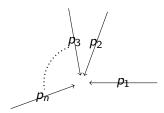


Scattering amplitudes

Arkani-Hamed and Trnka assert that the scattering amplitude (at tree level) in N=4 super Yang-Mills is the integral of a "volume form" ω_{SYM} of an amplituhedron (for d=k+4), and that this form can be calculated by studying "triangulations" of A(k,n,d):

$$\omega_{SYM} = \sum_{\text{cells } Y_f \text{ in a triangulation of } A(k, n, d)} \omega_{Y_f}$$

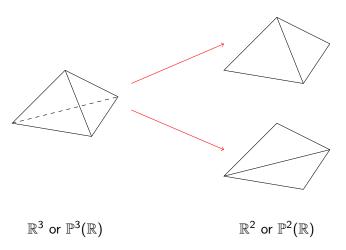
where ω_{Y_f} 's can be considered known.



Scattering amplitude =
$$A(p_1, p_2, \dots, p_n)$$
 "=" $\int \omega_{SYM}$

Triangulating a quadrilateral

Cells of a triangulations of a polytope $Z(\Delta_n)$ can be obtained by looking at the images Z(F) of lower-dimensional faces F of Δ_n .



Positroid cells

Postnikov described the facial structure of $Gr(k, n)_{\geq 0}$:

$$\operatorname{Gr}(k,n)_{\geq 0} = \bigsqcup_{f \in \operatorname{Bound}(k,n)} (\Pi_f)_{>0}$$

where

$$(\Pi_f)_{>0}\simeq \mathbb{R}^d_{>0}$$

are called positroid cells and

Bound
$$(k, n) \subset \tilde{S}'_n$$

is the set of bounded affine permutations, certain elements in the extended affine symmetric group \tilde{S}'_n .

Postnikov gave many objects to index these strata: Grassmann necklaces, decorated permutations, Le-diagrams,...

Partial order

The closure partial order for positroid cells was described by Postnikov and Rietsch.

Theorem (Knutson-L.-Speyer, after Postnikov and Rietsch)

$$\overline{(\Pi_f)_{>0}} = \bigcup_{g \geq f} (\Pi_g)_{>0}$$

where \geq is Bruhat order for the affine symmetric group restricted to Bound(k, n).

For k = 1, the set $\mathrm{Bound}(1, n)$ is in bijection with nonempty subsets of [n], which index faces of the simplex. The partial order is simply containment of subsets.

Triangulations of the amplituhedron

Define the amplituhedron cell

$$(Y_f)_{>0} := Z_{\mathrm{Gr}}((\Pi_f)_{>0}).$$

The map Z_{Gr} exhibits some features that are not present in the polytope case:

- **I** Even when $Z: \mathbb{R}^n \to \mathbb{R}^d$ is generic, the image $Z_{Gr}((\Pi_f)_{>0})$ may not have the expected dimension.
- 2 Even in the dimension-preserving case, the map

$$Z_{\mathrm{Gr}}:(\Pi_f)_{>0}\longmapsto (Y_f)_{>0}$$

can have degree greater than one.

Triangulations of the amplituhedron

Define the amplituhedron cell

$$(Y_f)_{>0} := Z_{\mathrm{Gr}}((\Pi_f)_{>0}).$$

The map Z_{Gr} exhibits some features that are not present in the polytope case:

- **I** Even when $Z: \mathbb{R}^n \to \mathbb{R}^d$ is generic, the image $Z_{Gr}((\Pi_f)_{>0})$ may not have the expected dimension.
- 2 Even in the dimension-preserving case, the map

$$Z_{\mathrm{Gr}}:(\Pi_f)_{>0}\longmapsto (Y_f)_{>0}$$

can have degree greater than one.

These questions bring us into the realm of Schubert calculus!

Cohomology of the Grassmannian

The cohomology ring $H^*(Gr(k, n))$ can be identified with a quotient of the ring of symmetric functions.

$$H^*(Gr(k, n)) = \bigoplus_{\lambda \subset (n-k)^k} \mathbb{Z} \cdot s_{\lambda}.$$

- Each irreducible subvariety $X \subset Gr(k, n)$ has a cohomology class [X].
- The Schur function s_{λ} is the cohomology classes of the Schubert variety $X_{\lambda} \subset \operatorname{Gr}(k, n)$.

Cohomology of the Grassmannian

The cohomology ring $H^*(Gr(k, n))$ can be identified with a quotient of the ring of symmetric functions.

$$H^*(Gr(k, n)) = \bigoplus_{\lambda \subset (n-k)^k} \mathbb{Z} \cdot s_{\lambda}.$$

- Each irreducible subvariety $X \subset Gr(k, n)$ has a cohomology class [X].
- The Schur function s_{λ} is the cohomology classes of the Schubert variety $X_{\lambda} \subset \operatorname{Gr}(k, n)$.

Cohomology classes know about:

- dimension
- degree (expected number of points of intersection with a generic hyperspace)

When k=1, the cohomology class [L] of a linear subspace $L\subset {\rm Gr}(1,n)=\mathbb{P}^{n-1}$ is simply its dimension.

Cohomology class of a positroid variety

The positroid variety Π_f is the Zariski-closure of $(\Pi_f)_{>0}$ in the (complex) Grassmannian Gr(k, n). Each Π_f is an intersection of rotated Schubert varieties:

$$\Pi_f = X_{I_1} \cap \chi(X_{I_2}) \cap \cdots \cap \chi^{n-1}(X_{I_n})$$

where χ denotes rotation.

Theorem (Knutson-L.-Speyer)

The cohomology class $[\Pi_f] \in H^*(Gr(k, n))$ can be identified with an affine Stanley symmetric function \tilde{F}_f .

Cohomology class of a positroid variety

The positroid variety Π_f is the Zariski-closure of $(\Pi_f)_{>0}$ in the (complex) Grassmannian Gr(k, n). Each Π_f is an intersection of rotated Schubert varieties:

$$\Pi_f = X_{I_1} \cap \chi(X_{I_2}) \cap \cdots \cap \chi^{n-1}(X_{I_n})$$

where χ denotes rotation.

$\mathsf{Theorem}\;(\mathsf{Knutson-L.-Speyer})$

The cohomology class $[\Pi_f] \in H^*(Gr(k, n))$ can be identified with an affine Stanley symmetric function \tilde{F}_f .

All faces of Δ_n of the same dimension "look" the same. The faces of $\operatorname{Gr}(k,n)_{\geq 0}$ of the same dimension are abstractly homeomorphic, but don't "look" the same when considered as embedded subsets of the Grassmannian.

Truncation

Suppose

$$G = \sum_{\lambda \subset (n-k)^k} a_\lambda s_\lambda \in H^*(\mathrm{Gr}(k,n)).$$

Define the truncation

$$au_d(G) = \sum_{\mu \subset (d-k)^k} a_{\mu^+} s_{\mu} \in H^*(\mathrm{Gr}(k,d))$$

where μ^+ is obtained from μ by adding n-d columns of length k to the left of μ

$$\mu = \boxed{\qquad \qquad }$$

$$\mu^+ = \boxed{\qquad \qquad }$$

An example

Example

Let k = 2, n = 8, d = 6. For $w = s_1 s_3 s_5 s_7$ we have

$$F_w = (x_1 + x_2 + \cdots)^4 = s_{\square \square \square} + 3s_{\square \square} + 2s_{\square \square} + 3s_{\square \square} + s_{\square \square}$$

and

$$\tau_d(F_w) = 2.$$

This is the smallest "physical" example, where the amplituhedron cell is mapped onto with degree 2.

Cohomology class of an amplituhedron variety

Suppose Z is generic. Define the amplituhedron variety

$$Y_f := \overline{Z_{\mathrm{Gr}}(\Pi_f)}.$$

Say f has kinematical support if dim $Y_f = \dim \Pi_f$.

Theorem (L.)

- **1** Suppose $\tau_d(\tilde{F}_f) = 0$. Then f does not have kinematical support.
- 2 Suppose $\tau_d(\tilde{F}_f) \neq 0$. Then f has kinematical support and

$$[Y_f] = \frac{1}{\kappa} \tau_d(\tilde{F}_f)$$

where κ is the degree of $Z_{Gr}|_{\Pi_{\epsilon}}$.

3 Suppose $\dim(\Pi_f) = \operatorname{Gr}(k, d)$ and f has kinematical support. Then $\kappa = [s_{(n-d)^k}]\tilde{F}_f$.

We can also obtain properties of $(Y_f)_{>0}$ since $Y_f = (Y_f)_{>0}$

Truncated Stanley symmetric functions

Problem

Find a "monomial" description of $\tau_d(\tilde{F}_f)$.

Problem

What happens if Z is not generic?

The cyclic polytope is the image of Δ_n under a generic "positive" map.

When Z is not generic, we are replacing the analogue of the cyclic polytope, by an arbitrary polytope.

Problem

The closure partial order for Π_f is affine Bruhat order. What is the closure partial order for Y_f (and how do we define it)?

This should be some kind of "quotient" of Bruhat order.

Happy Birthday, Richard!