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Let P be a partially ordered set. Then a P-partition is an
order-reversing map from P to the nonnegative integers. So
ordinary partitions correspond to totally ordered posets.

Plane partitions correspond to posets like
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The basic idea behind the theory of P-partitions, discovered by
Percy MacMahon, is that the set P-partitions can be expressed
as a disjoint union of solutions of inequalities like
a ≥ b > c > d ≥ e, and the solutions of inequalities like this are
easy to count.



Richard Stanley’s 1971 Ph.D. thesis was on P-partitions and
plane partitions, and the material on P-partitions was published
in the AMS Memoir Ordered Structures and Partitions in 1972.
He was the first to consider P-partitions in full generality, but
earlier researchers approached the subject from different points
of view, and in this talk I will discuss their work.



MacMahon

The idea behind P-partitions begins with Percy A. MacMahon’s
work on plane partitions in 1911. The problem that MacMahon
considers is that of counting plane partitions of a given shape;
that is, arrangements of nonnegative integers with a given sum
in a “lattice” such as

4 4 2 1
4 3 2
2 1

in which the entries are weakly decreasing in each row and
column.



MacMahon gives a simple example to illustrate his idea. We
want to count arrays of nonnegative integers

p q
r s

satisfying p ≥ q ≥ s and p ≥ r ≥ s, and we assign to such an
array the weight xp+q+r+s. We want to find the sum of these
weights.

MacMahon observes that the set of solutions of these
inequalities is the disjoint union of the solution sets of the
inequalities

(i) p ≥ q ≥ r ≥ s and (ii) p ≥ r > q ≥ s.
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To count solutions of the first inequality, p ≥ q ≥ r ≥ s, we set
r = s + A, q = s + A + B, and p = s + A + B + C, where A, B,
and C are arbitrary nonnegative integers, we see that the sum∑

xp+q+r+s is equal to∑
A,B,C,s≥0

xC+2B+3A+4s =
1

(1)(2)(3)(4)
,

where (n) = (1− xn).

Similarly, the generating function for solutions of p ≥ r > q ≥ s
is x2/(1)(2)(3)(4), so the generating function for all of the
arrays is

1 + x2

(1)(2)(3)(4)
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MacMahon explains (but does not prove) that a similar
decomposition exists for counting plane partitions of any shape,
and moreover, the terms that appear in the numerator have
combinatorial interpretations. They correspond to what
MacMahon called lattice arrangements, which we now call
standard Young tableaux. In the example under discussion
there are two lattice arrangements,

4 3
2 1

and
4 2
3 1

.

They are the plane partitions of the shape under consideration
in which the entries are 1,2, . . . ,n, where n is the number of
entries in the shape.



To each lattice arrangement MacMahon associates a lattice
permutation: the i th entry in the lattice permutation
corresponding to an arrangement is the row of the arrangement
in which n + 1− i appears, where the rows are represented by
the Greek letters α, β, . . . . So the lattice permutation

associated to
4 3
2 1

is ααββ and to
4 2
3 1

is αβαβ.

(A sequence of Greek letters is called a lattice permutation if
any initial segment contains at least as many αs as βs, at least
as many βs as γs, and so on.)
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To each lattice permutation, MacMahon associates an
inequality relating p, q, r , and s; the αs are replaced, in
left-to-right order with the first-row variables p and q, and the βs
are replaced with the second-row variables r and s. A greater
than or equals sign is inserted between two Greek letters that
are in alphabetical order and a greater than sign is inserted
between two Greek letters that are out of alphabetical order. So
the lattice permutation ααββ gives the inequalities
p ≥ q ≥ r ≥ s and the lattice permutation αβαβ give the
inequalities p ≥ r > q ≥ s. Each lattice permutation contributes
one term to the numerator, and the power of x in such a term is
the sum of the positions of Greek letters that are followed by a
smaller Greek letter.



MacMahon then describes the variation with a bound on the
largest part size. The decomposition into disjoint inequalities
works exactly as in the unrestricted case, and reduces the
problem to counting partitions with a given number of parts and
a bound on the largest part.



In a postscript to his 1911 paper, MacMahon considers the
analogous situation in which only decreases in the rows are
required, not in the columns, and he elaborates on this idea in a
1913 paper. The enumeration of such arrays is not of much
interest in itself, since the generating function for an array with
p1,p2, . . . ,pn nodes in its n rows is clearly

1
(1) · · · (p1)(1) · · · (p2) · · · · · · (1) · · · (pn)

.



However the same decomposition that is used in the case of
plane partitions yields interesting results about permutations.

Given a sequence of elements of a totally ordered set,
MacMahon defines a major contact (we now call this a descent)
to be a pair of consecutive entries in which the first is greater
than the second, and he defines the greater index (now usually
called the major index) to be the sum of the positions of the first
elements of the major contacts.

(Curiously, MacMahon used the term “major index” for a related
concept that does not seem to have been further studied.)



Thus the greater index of βαααγγβαγ, where the letters are
ordered alphabetically, is 1 + 6 + 7 = 14. (MacMahon similarly
defines the “equal index” and “lesser index” but these do not
play much of a role in what follows.) MacMahon’s main result in
the paper is that the sum

∑
xp, where p is the greater index,

over all “permutations of the assemblage αiβ jγk · · · ” is

(1)(2) · · · (i + j + k + · · · )
(1)(2) · · · (i) · (1)(2) · · · (j) · (1)(2) · · · (k) · · ·



As in the previous paper MacMahon illustrates with an
example, but does not give even an informal proof or
explanation of why the decomposition works.

Here is MacMahon’s example:
We consider the sum of xa1+a2+a3+b1+b2 over all inequalities
a1 ≥ a2 ≥ a3, b1 ≥ b2. We see directly that the sum is

1
(1)(2)(3) · (1)(2)

.
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MacMahon breaks up these inequalities just as before into
subsets corresponding to all the permutations of α3β2; for
example, to the permutation αβαβα correspond the inequalities
a1 ≥ b1 > a2 ≥ b2 > a3, where the strict inequalities
correspond to the major contacts. The generating function for
this set of inequalities is

x6

(1)(2)(3)(4)(5)
;

here 6 = 2 + 4 is the the greater index of the permutation
αβαβα. Summing the contributions from all ten permutations of
α3β2 gives ∑

xp

(1)(2)(3)(4)(5)
=

1
(1)(2)(3) · (1)(2)

.



In his book Combinatory Analysis (1915–1916) MacMahon
elaborates on the analogous result when a bound is imposed
on the part sizes. The sum of xa1+···+ap over all solutions of
n ≥ a1 ≥ · · · ≥ ap is (n + 1) · · · (n + p)/(1) · · · (p), and
MacMahon derives an important, though not well-known,
formula that he writes as

∞∑
n=0

gn (n + 1) · · · (n + p1) · · · · · · (n + 1) · · · (n + pm)

(1)(2) · · · (p1) · · · · · · (1)(2) · · · (pm)

=
1 + g PF1 +g2 PF2 + · · ·+ gν PFν

(1− g)(1− gx)(1− gx2) · · · (1− gxp1+···+pν )
.

Here PFs is the generating function, by greater index, of
permutations of the assemblage αp1

1 α
p2
2 · · ·α

pm
m with s major

contacts.



This result is sufficiently important that it is worth restating it in
more modern notation: Let

Ap1,...,pm(t ,q) =
∑
π

tdes(π)qmaj(π),

where the sum is over all permutations π of the multiset
{1p1 ,2p2 , . . . ,mpm}, and if π = a1 · · · ap, where
p = p1 + · · ·+ pm then des(π) is the number of descents of π,
that is, the number of indices i for which ai > ai+1, and maj(π)
is the sum of the descents of π.



Let (a;q)m be the q-rising factorial

(1− a)(1− aq) · · · (1− aqn−1),

let (q)n denote (q;q)n = (1− q) · · · (1− qn) and let
[m

n

]
denote

the q-binomial coefficient

(q)m

(q)n(q)m−n
.

Then
∞∑

n=0

tn
[
n + p1

p1

][
n + p2

p2

]
· · ·
[
n + pm

pm

]
=

Ap1,...,pm(t ,q)
(t ;q)p+1

.
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Several specializations are worth mentioning. If we set q = 1
then the polynomials Ap1,...,pm(t ,1) give the solution of Simon
Newcomb’s problem which MacMahon had solved earlier by a
different method. (Curiously, MacMahon does not note the
connection with Simon Newcomb’s problem.)



In the case q = 1, p1 = · · · = pm = 1, the polynomials A1m(t ,1)
are the Eulerian polynomials satisfying

∞∑
n=0

tn(n + 1)m =
A1m(t)

(1− t)m+1 .

For p1 = · · · = pm = 1, we have a formula for q-Eulerian
polynomials

∞∑
n=0

tn(1 + q + · · ·+ qn)m =
A1m(t ,q)
(t ;q)m+1

,

a result often attributed to Carlitz in 1975.

MacMahon did not seem to attach any special importance to
the case of permutations with distinct entries, and he never
used exponential generating functions, which usually give
simpler formulas in these cases.
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Kreweras

In 1967, Germain Kreweras used an approach similar to
MacMahon’s, though stated very differently, to solve a common
generalization of Simon Newcomb’s problem and what he calls
“Young’s problem”. (Kreweras seems to be unaware of
MacMahon’s work on Simon Newcomb’s problem and refers
only to Riordan’s Combinatorial Analysis as a reference on
Simon Newcomb’s problem.)



In Young’s problem, we are given two weakly decreasing
sequences Y = (y1, . . . , yh) and Y ′ = (y ′1, . . . , y

′
h) with yi ≥ y ′i

for each i and we ask how many “Young chains” there are from
Y ′ to Y , which are sequences of partitions (weakly decreasing
sequences of integers) starting with Y ′ and ending with Y in
which each partition is obtained from the previous one by
increasing one part by 1.



In modern terminology, these are standard skew tableaux of
shape Y/Y ′; that is, fillings of a Young diagram of shape Y with
the squares of a Young diagram of shape Y ′ removed from it,
with the integers 1,2, . . . ,m (where m is the total number of
squares), so that the entries are increasing in every row and
column. For example, if Y ′ = (2,1,0) and Y = (3,2,2) then
one of the Young chains from Y ′ to Y is

Y ′ = (2,1,0), (3,1,0), (3,1,1), (3,2,1), (3,2,2) = Y .

This corresponds to the skew Young tableau

1
3

2 4

in which the entry i occurs in row j if the i th step in the chain is
an increase by 1 in the j th position.
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Kreweras defines a “return” (retour en arrière) of a Young chain
to consist of three consecutive partitions UVW such that the
entry augmented in passing from V to W has an index that is
strictly less than which is augmented in passing from U to V .

In terms of Young tableau, a return corresponds to an entry i
which is in a higher row than i + 1.

In our example
1

3
2 4

1 and 3 correspond to returns. Kreweras’s returns in Young
chains correspond to MacMahon’s major contacts of lattice
permutations.
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Kreweras writes θr (Y ,Y ′) for the number of Young chains from
Y ′ to Y with r returns.

He observes that Simon Newcomb’s problem is equivalent to a
special case of computing θr (Y ,Y ′); thus the number of
permutations of the multiset {13,2,32} with r descents is equal
to the number of skew Young tableaux of shape

with r returns.
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He then gives the solution to this problem in the form∑
r≥0 θr (Y ,Y ′)t r

(1− t)η−η′+1 =
∑
r≥0

wr t r .

Here η is the sum of the entries of Y , η′ is the sum of the
entries of Y ′, and wr is the number of chains

Y ′ ≤ Z1 ≤ · · · ≤ Zr ≤ Y ;

In earlier work, Kreweras had given the formula

wr = det
((

yi − y ′j + r
i − j + r

))
i,j=1,...,h

,

where Y = (y1, . . . , yh) and Y ′ = (y ′1, . . . , y
′
h). In the case of

Simon Newcomb’s problem, the determinant is upper triangular,
and is therefore a product of binomial coefficients (as can also
be seen directly).



Kreweras’s method of proof is equivalent to MacMahon’s
approach, though described very differently.

In a later paper, entitled Polynômes de Stanley et extensions
linéaires d’un ordre partiel, Kreweras studies what is in
Stanley’s terminology the order polynomial of a naturally
labeled poset. Although published in 1981, long after Stanley’s
1972 memoir, Kreweras states that Stanley’s work was
unknown to him when the paper was written.
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Knuth

In 1970, Donald E. Knuth used MacMahon’s approach to study
solid (i.e., three-dimensional) partitions.

MacMahon had conjectured that the generating function for
solid partitions was

∏∞
i=1(1− z i)−(

i+1
2 ). This conjecture had

been disproved earlier by Atkin, Bratley, Macdonald, and
McKay, but Knuth wanted to compute the number c(n) of solid
partitions of n for larger values of n in an (unsuccessful)
attempt to find patterns. Knuth realized that MacMahon’s
approach would work for arbitrary partially ordered sets, not
just those corresponding to plane partitions.
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Knuth takes a set P (not necessarily finite) partially ordered by
the relation ≺ and well-ordered by the total order <, where
x ≺ y implies x < y . (The main example is N× N with ≺ the
product order and < the lexicographic order.)

He defines a P-partition of N to be a function n from P to the
set of nonnegative integers satisfying

(i) x ≺ y implies n(x) ≥ n(y),
(ii) only finite many x have n(x) > 0,
(iii)

∑
x∈P n(x) = N.
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Knuth proves that there is a bijection from P-partitions of N to
pairs of sequences

n1 ≥ n2 ≥ · · · ≥ nm

x1, x2, . . . , xm

where m ≥ 0, the ni are positive integers with sum N, and the
xi are distinct elements of P satisfying

(S1) For 1 ≤ j ≤ m and x ∈ P, x ≺ xi implies x = xi for some
i < j .

(S2) xi > xi+1 implies ni > ni+1 for 1 ≤ i < m.



Knuth is interested primarily in the case in which P is countably
infinite, and in this case he uses a modification of the bijection
just described to prove that if P is an infinite poset and s(n) is
the number of P-partitions of n then

1 + s(1)z + s(2)z2 + · · ·
= (1 + t(1)z + t(2)z2 + · · · )/(1− z)(1− z2)(1− z3) · · ·

where t(k) is the number of linear extensions of finite order
ideals of P with “index” k , where Knuth’s index is a variant of
MacMahon’s greater index.



Thomas

Glânffrwd Thomas’s 1977 paper, based on his 1974 Ph.D.
thesis appeared after Stanley’s memoir, but it was written
without knowledge of Stanley’s work. The main novelty in
Thomas’s work is his introduction of quasi-symmetric functions,
and the use of Baxter operators in studying them.



Thomas’s starting point was the combinatorial definition of
Schur functions. If λ is a partition, then a Young tableau of
shape λ is a filling of the Young diagram of λ that is weakly
increasing in rows and strictly increasing in columns. For
example, if λ is the partition (4,2,1) then a Young tableau of
shape λ is

4 4 1 1
2 1
1

(1)

The Schur function sλ is the sum of the weights of all Young
tableaux of shape λ, where the weight of a Young tableau is the
product of xi over all of its entries i . (So the weight of the
tableau (1) is x4

1 x2x2
4 .)



Thomas considers a more general situation, in which we allow
as shapes (which Thomas calls “frames”) any subset of Z× Z
and he defines a numbering of a frame to be filling with positive
integers that is weakly increasing in rows and strictly increasing
in columns. For example,

1 2
4

2 4

(2)

is a numbering. To any frame he associates an index frame by
replacing its entries in increasing order with 1,2, . . . ,m, where
m is the number of entries, and ties are broken from bottom to
top and then left to right. Thus the index numbering
corresponding to (2) is

1 3
5

2 4



In fact, there is nothing special about the posets Thomas was
studying, and what he did would apply just as well to
P-partitions for an arbitrary poset P. From our perspective, the
main novelty of his work is in his application of Baxter operators
to what we now call quasi-symmetric functions.



As we have seen, the study of P-partitions leads to inequalities
like j1 ≥ j2 > j3 ≥ j4, or equivalently (following Thomas),

i1 ≤ i2 < i3 ≤ i4.

MacMahon was interested in
∑

x i1+···+i4 , but Thomas was
interested in the multivariable generating function∑

i1≤i2<i3≤i4

xi1xi2xi3xi4 .

This is an example of what we now call a fundamental
quasi-symmetric function; these form a basis for the algebra of
quasi-symmetric functions. Thomas used Baxter operators to
construct them.



A Baxter operator on a commutative algebra A is linear
operator B : A→ A such that for some fixed θ 6= 0,

B(aB(b)) + B(bB(a)) = B(a)B(b) + B(θab)

for all a,b ∈ A.

Now let A be the algebra of infinite sequences (a1,a2, . . . ) with
entries in a field, with componentwise operations.
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We define two maps A→ A:

S(a1,a2, . . . ) =

(
0,a1,a1 + a2, . . . ,

r−1∑
i=1

ai , . . .

)
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(
a1,a1 + a2, . . . ,
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i=1

ai , . . .

)

=

(
. . . ,

r∑
i=1

ai , . . .

)

Then S and P are Baxter operators.
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)
(introduced by Rota and Smith)

P(a1,a2, . . . ) =

(
a1,a1 + a2, . . . ,

r∑
i=1

ai , . . .

)

=

(
. . . ,

r∑
i=1

ai , . . .

)

Then S and P are Baxter operators.



An example showing the connection between these operators
and quasi-symmetric functions:

Let x = (x1, x2, x3, . . . ). Then

xS(xS(xP(x))) =
(
. . . ,

∑
1≤i≤j<k<r

xixjxkxr , . . .

)
.



Happy Birthday
Richard


