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Preamble

Peter McMullen and Geoffrey Shephard end their 1971 London
Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture

by stating McMullen’s recently posed g -conjecture characterizing
f -vectors of simplicial convex polytopes with the lead sentence

“Even more intriguing, if rather less plausible, is the following
conjecture proposed in [14].”

By the end of that decade, the g -conjecture had become the
g -theorem, and algebraic combinatorics had become part of
mainstream mathematics, thanks to the work of our honoree.
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Where it came from: Upper bounds and cyclic polytopes

Upper Bound Theorem(McMullen 1970): If Q is an d-dimensional
polytope with n vertices, then for any i ,

fi (Q) ≤ fi (C (n, d)) =: fi (n, d)

where C (n, d) is the cyclic d-polytope with n vertices

, i.e.,

C (n, d) := conv
{
x(t1), x(t2) . . . , x(tn)

}
where t1 < t2 < · · · < tn and x(t) := (t, t2, . . . , td).

Proof uses shellability of polytopes (Bruggesser & Mani).

Note: It is sufficient to prove this for simplicial polytopes (every
face a simplex).
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The Upper Bound Conjecture

In his 1973 review of the McMullen-Shephard book,
H.S.M. Coxeter wrote:

“In 1957, T. Motzkin asserted that, for every d-polytope P with
f0(P) = v, fk(P) ≤ fk(v , d). Since he never published a proof, this
assertion became known as the upper bound conjecture (U.B.C.).
It was proved in various special cases, but the present book
contains the first complete account of the proof in its full
generality. The authors point out that there exist, for d ≥ 4,
spherical complexes (”triangulations” of the (d − 1)-sphere) that
cannot be realized as boundary complexes of polytopes.
Consequently, although the U.B.C. has now been established for
polytopes, it remains a conjecture (though an extremely plausible
one) for spherical complexes.”

Earlier speculations by Grünbaum in 1970 and Klee in 1964.
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U.B.C. for spheres

In 1975, Richard Stanley proved the UBC for triangulated spheres,

introducing the face ring and methods of commutative algebra.

The study of convex polytopes was dramatically changed by this,
as was the study of commutative algebra.

The h-vector (h0, . . . , hd) of a (d − 1)-dimensional simplicial
complex ∆ is defined by the polynomial relation

d∑
i=0

hix
d−i =

d∑
i=0

fi−1(x − 1)d−i .

The h-vector and the f -vector of a polytope mutually determine

each other via the formulas (for 0 ≤ i ≤ d):

hi =
i∑

j=0

(−1)i−j
(
d − j

i − j

)
fj−1 , fi−1 =

i∑
j=0

(
d − j

i − j

)
hj .
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Face Ring

∆ (d − 1)-dim’l simplicial cmplx, vertices V = {v1, . . . , vn}, K field

I∆ ⊂ K [x1, . . . , xn] homogeneous ideal generated by nonfaces of ∆,

i.e., by all monomials xi1xi2 · · · xik where {vi1 , vi2 , . . . , vik} /∈ ∆.

Face ring of ∆ A∆ := K [x1, . . . , xn]/I∆.

A∆ is graded K-algebra, i.e., as a K -vector space

A∆ = A0 ⊕ A1 ⊕ A2 ⊕ · · ·

where Ai is subspace of homogeneous polynomials of degree i in
A∆ (A0

∼= K and Ai · Aj ⊆ Ai+j).

A∆ standard graded K -algebra, i.e., generated as K -algebra by A1.

Hilbert function of A∆ H(i) := dimKAi

Hilbert series ∑
m≥0

H(m) tm =
h0 + h1t + · · ·+ hd t

d

(1− t)d
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Macaulay conditions

Macaulay(1927): Sequence of nonnegative integers h0, h1, . . . is
the Hilbert function of a standard graded algebra over field K ⇐⇒

∃ set of monomials M in variables x1, x2, . . . , xk , closed under the
division order, so that

hi = |{m ∈ M | deg(m) = i}|

Such a sequence h0, h1, . . . is called an M-sequence.

Numerical characterization: For positive integers h and i ,

h =

(
ni
i

)
+

(
ni−1

i − 1

)
+ · · ·+

(
nj
j

)
, ni > ni−1 > · · · > nj ≥ j ≥ 1

h〈i〉 =

(
ni + 1

i + 1

)
+

(
ni−1 + 1

i

)
+ · · ·+

(
nj + 1

j + 1

)
; 0〈i〉 = 0

h0, h1, . . . is an M-sequence (M-vector) ⇐⇒

h0 = 1 and for each i ≥ 1, 0 ≤ hi+1 ≤ h
〈i〉
i
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UB Theorem from Cohen-Macaulayness

To prove UBC, McMullen showed for simplicial P with f0(P) = n,

hi ≤
(
n − d + i − 1

i

)
, 0 ≤ i ≤ d ,

which implies (for polytopes) fi (P) ≤ fi (C (n, d)), i ≤ d − 1

By Macaulay conditions, inequality on h′i s would follow if
h0, h1, . . . were an M-sequence, so a Hilbert function.

Stanley’s Upper Bound Theorem (1975): If A∆ is a
Cohen-Macaulay ring, then h0, h1, . . . is an M-sequence.

Reisner(1976): A∆ is Cohen-Macaulay ring ⇐⇒
∆ is a Cohen-Macaulay complex, e.g., a sphere!
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h(∆) as a Hilbert function

Note: A∆ CM means A∆ is free module over the polynomial
subring K [θ1, . . . , θd ] where θ1, . . . , θd are generic forms in A1

(a.k.a. linear system of parameters)

The proof of the UBT shows that h(∆) is the Hilbert function of
the graded algebra

B := A∆/〈θ1, . . . , θd〉 = B0 ⊕ B1 ⊕ · · · ⊕ Bd

i.e., hi = dimK Bi
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Lower Bound Thm & Generalized Lower Bound Conj

Lower Bound Theorem [Barnette (1971,1973)]: For a
d-dimensional simplicial convex polytope P

1 fd−1 ≥ (d − 1)f0 − (d + 1)(d − 2), and

2 fk ≥
(d
k

)
f0 −

(d+1
k+1

)
k for all 1 ≤ k ≤ d − 2

The g -vector (g0, . . . , gbd/2c) of P is defined by g0 = 1 and
gi = hi − hi−1, for i = 1 . . . bd/2c.

Generalized Lower Bound Conjecture[McMullen & Walkup (1971)]:
Let P be a simplicial d-polytope. Then

1 gi ≥ 0, i ≤ d/2, and

2 gk = 0 for some k ≤ d/2 ⇔ P is (k − 1)-stacked, i.e., there is
a triangulation of (the d-ball) P all of whose faces of
dimension at most d − k are faces of P.
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The g -conjecture

McMullen’s g -conjecture (1971): A vector h = (h0, h1, . . . , hd) of
nonnegative integers is the h vector of a simplicial d-polytope P if
and only if

1 hi = hd−i for i = 0, . . . , d , and

2 the g -vector g = (g0, g1, . . . , gbd/2c) is an M-vector

Note:

1 is the Dehn-Sommerville equations for simplicial polytopes
and spheres, known since 1927

2 includes gi ≥ 0 from the GLB conjecture plus the pseudopower
inequalities (McMullen was unaware of M-vectors!)

3 To prove necessity you have to start with a polytope and
produce an order ideal of monomials; to prove sufficiency you
get to start with a convenient order ideal of monomials and
use it to make a polytope.
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Sufficiency: B & Lee

To construct a (d − 1)-sphere with the desired h-vector

1 Given M-vector (g0, g1, . . . , gbd/2c), let M be the order ideal
consisting of ∀i the first gi monomials in (reverse)
lexicographic order on variables X1, . . . ,Xn where
n = g1 + d + 1.

2 From M, construct collection of facets in the cyclic polytope
C (n, d + 1). (Monomials determine how far pairs are shifted.)

3 The simplicial complex ∆ generated by these facets will be a
shellable d-ball and have h(∆) = (g0, g1, . . . , gbd/2c, 0, . . . , 0).

4 Then ∂∆ is a (d − 1)-sphere with h(∂∆) = (h0, . . . , hd).

5 Choose t1, t2, . . . , tn defining C (n, d + 1) so that ∆ is precisely
the set of facets seen from some point v /∈ C (n, d + 1). Then
∂∆ will be the boundary of a d-polytope.
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2 From M, construct collection of facets in the cyclic polytope
C (n, d + 1). (Monomials determine how far pairs are shifted.)

3 The simplicial complex ∆ generated by these facets will be a
shellable d-ball and have h(∆) = (g0, g1, . . . , gbd/2c, 0, . . . , 0).

4 Then ∂∆ is a (d − 1)-sphere with h(∂∆) = (h0, . . . , hd).

5 Choose t1, t2, . . . , tn defining C (n, d + 1) so that ∆ is precisely
the set of facets seen from some point v /∈ C (n, d + 1). Then
∂∆ will be the boundary of a d-polytope.
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Place a point z outside a polytope Q; some of the faces of Q are
visible from z .
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The shadow boundary is the boundary of the visible region, a
polytope since it is a slice of conv(Q ∪ {z}).
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Necessity: Stanley

In his 1978 review of Stanley’s UBT paper, McMullen mused:

“The theorem has a similar form to and is probably a useful step
towards a conjecture of the reviewer . . . , which would characterize
all possible f -vectors (f0, f1, . . . , fd−1) of simplicial d-polytopes,
and, conceivably, also of all triangulations of (d − 1)-spheres.”

Stanley had similar musings in print as early as 1975:

“Conjectures 1 and 2 are closely related to the main conjecture of
[5].” (= g -conjecture)

Basically, we have a graded algebra B with Hilbert function h(P),
and we want another graded algebra with Hilbert function g(P).

Enter, toric varieties .....
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Toric Varieties

1 Given (rational) simplicial polytope P with origin in interior,
form the fan Σ by forming the cone on each face σ of P
(union of all half rays through points of σ).

2 The toric variety XP on this fan will have cohomology ring
isomorphic to the graded algebra B = A∆/〈θ1, . . . , θd〉, where
the θi are the linear system of parameters determined by the
vertex coordinates of P.

3 Thus, the Betti numbers of XP are β2i = dimBi = hi .

4 The Hard Lefschetz Theorem for XP gives an element ω ∈ B1

such that multiplying by ω gives injective maps Bi−1 −→ Bi ,
for i ≤ d/2.

5 Consequently the algebra C := B/〈ω〉 will have g(P) as its
Hilbert function.

6 Thus g(P) is an M-vector.



Toric Varieties

1 Given (rational) simplicial polytope P with origin in interior,
form the fan Σ by forming the cone on each face σ of P
(union of all half rays through points of σ).

2 The toric variety XP on this fan will have cohomology ring
isomorphic to the graded algebra B = A∆/〈θ1, . . . , θd〉, where
the θi are the linear system of parameters determined by the
vertex coordinates of P.

3 Thus, the Betti numbers of XP are β2i = dimBi = hi .

4 The Hard Lefschetz Theorem for XP gives an element ω ∈ B1

such that multiplying by ω gives injective maps Bi−1 −→ Bi ,
for i ≤ d/2.

5 Consequently the algebra C := B/〈ω〉 will have g(P) as its
Hilbert function.

6 Thus g(P) is an M-vector.



Toric Varieties

1 Given (rational) simplicial polytope P with origin in interior,
form the fan Σ by forming the cone on each face σ of P
(union of all half rays through points of σ).

2 The toric variety XP on this fan will have cohomology ring
isomorphic to the graded algebra B = A∆/〈θ1, . . . , θd〉, where
the θi are the linear system of parameters determined by the
vertex coordinates of P.

3 Thus, the Betti numbers of XP are β2i = dimBi = hi .

4 The Hard Lefschetz Theorem for XP gives an element ω ∈ B1

such that multiplying by ω gives injective maps Bi−1 −→ Bi ,
for i ≤ d/2.

5 Consequently the algebra C := B/〈ω〉 will have g(P) as its
Hilbert function.

6 Thus g(P) is an M-vector.



Toric Varieties

1 Given (rational) simplicial polytope P with origin in interior,
form the fan Σ by forming the cone on each face σ of P
(union of all half rays through points of σ).

2 The toric variety XP on this fan will have cohomology ring
isomorphic to the graded algebra B = A∆/〈θ1, . . . , θd〉, where
the θi are the linear system of parameters determined by the
vertex coordinates of P.

3 Thus, the Betti numbers of XP are β2i = dimBi = hi .

4 The Hard Lefschetz Theorem for XP gives an element ω ∈ B1

such that multiplying by ω gives injective maps Bi−1 −→ Bi ,
for i ≤ d/2.

5 Consequently the algebra C := B/〈ω〉 will have g(P) as its
Hilbert function.

6 Thus g(P) is an M-vector.



Toric Varieties

1 Given (rational) simplicial polytope P with origin in interior,
form the fan Σ by forming the cone on each face σ of P
(union of all half rays through points of σ).

2 The toric variety XP on this fan will have cohomology ring
isomorphic to the graded algebra B = A∆/〈θ1, . . . , θd〉, where
the θi are the linear system of parameters determined by the
vertex coordinates of P.

3 Thus, the Betti numbers of XP are β2i = dimBi = hi .

4 The Hard Lefschetz Theorem for XP gives an element ω ∈ B1

such that multiplying by ω gives injective maps Bi−1 −→ Bi ,
for i ≤ d/2.

5 Consequently the algebra C := B/〈ω〉 will have g(P) as its
Hilbert function.

6 Thus g(P) is an M-vector.



Toric Varieties

1 Given (rational) simplicial polytope P with origin in interior,
form the fan Σ by forming the cone on each face σ of P
(union of all half rays through points of σ).

2 The toric variety XP on this fan will have cohomology ring
isomorphic to the graded algebra B = A∆/〈θ1, . . . , θd〉, where
the θi are the linear system of parameters determined by the
vertex coordinates of P.

3 Thus, the Betti numbers of XP are β2i = dimBi = hi .

4 The Hard Lefschetz Theorem for XP gives an element ω ∈ B1

such that multiplying by ω gives injective maps Bi−1 −→ Bi ,
for i ≤ d/2.

5 Consequently the algebra C := B/〈ω〉 will have g(P) as its
Hilbert function.

6 Thus g(P) is an M-vector.



Where it went (and is going): Polytope algebra

McMullen (1989,1993) gave a proof of necessity via his “polytope
algebra”, mirroring Stanley’s proof and effectively proving the Hard
Lefschetz Theorem for toric varieties via methods of convex
analysis, thereby eliminating the need to think explicitly about toric
varieties.

Or, as he once (only half-jokingly) put it,

“ridding the subject of this malignancy”.
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The “toric” h-vector

Stanley (1987) extended the toric variety argument to arbitrary
rational (not necessarily simplicial) polytopes by means of
intersection cohomology Betti numbers (the so-called “toric”
h-vector, a generalization of the simplicial h-vevtor).

The resulting toric g -vector is nonnegative (by Hard Lefschetz for
IH), but not an M-vector (since IH is not a ring).

Karu (2004) showed toric g -vector nonnegative for all polytopes by
an extension of the Hard Lefschetz Theorem to “combinatorial
intersection homology” (piecewise polynomials on the fan but no
toric variety).
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Flag f -vectors and the cd-index

Bayer & B (1985) extended Dehn-Sommerville equations to the
flag f -vectors of polytopes and, more generally, Eulerian posets,
showing only Fibonacci many flag numbers are needed.

Fine; Bayer & Klapper (1991) define cd-index for Eulerian posets,
capturing the Fibonacci amount of information in the flag vectors.

Stanley (1994) shows cd-index of polytopes is nonnegative. (Conj.
of Fine)

B & Ehrenborg(2000) show that cd-index of polytopes is
minimized on simplices. (Conj. of Stanley)

Karu (2006) shows cd-index of spheres (Gorenstein* posets) is
nonnegative. (Conj. of Stanley)

Ehrenborg & Karu (2007) show that cd-index of Gorenstein*
lattices is minimized on simplices. (Conj. of Stanley)
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f -vectors of manifolds and other complexes

Novik (1998): Upper bound theorems for homology manifolds

Novik & Swartz (2012): Face numbers of pseudomanifolds with
isolated singularities.

Kolins (2011) Studied f -vectors of triangulated balls

Stanley (and many others): f -vectors of simplicial posets .....
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Equality case of the GLB conjecture

Murai & Nevo (2013) proved the equality case of the GLB using
methods of commutative algebra. (See FPSAC 2014.)



The g -conjecture for spheres

There have been many attempts to extend the GLB Theorem to
triangulated spheres.

There have been at least three incorrect proofs announced since
1990. Is this the Bermuda triangle of algebraic combinatorics?

McMullen-Walkup (1971): “Nevertheless, there are real differences
as well as deep theoretical questions to be met with in extending
results on simplicial polytopes to triangulated spheres (see
Grünbaum [1970]). We have therefore satisfied ourselves with
venturing the Generalized Lower-bound Conjecture for polytopes
only.”
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