"Even more intriguing, if rather less plausible..."

Louis J. Billera
Cornell University

Stanley@70, June 26, 2014

Peter McMullen and Geoffrey Shephard end their 1971 London Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture

Peter McMullen and Geoffrey Shephard end their 1971 London Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture
by stating McMullen's recently posed g-conjecture characterizing f-vectors of simplicial convex polytopes with the lead sentence

Peter McMullen and Geoffrey Shephard end their 1971 London Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture
by stating McMullen's recently posed g-conjecture characterizing f-vectors of simplicial convex polytopes with the lead sentence
"Even more intriguing, if rather less plausible, is the following conjecture proposed in [14]."

Peter McMullen and Geoffrey Shephard end their 1971 London Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture
by stating McMullen's recently posed g-conjecture characterizing f-vectors of simplicial convex polytopes with the lead sentence
"Even more intriguing, if rather less plausible, is the following conjecture proposed in [14]."

By the end of that decade, the g-conjecture had become the g-theorem,

Peter McMullen and Geoffrey Shephard end their 1971 London Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture
by stating McMullen's recently posed g-conjecture characterizing f-vectors of simplicial convex polytopes with the lead sentence
"Even more intriguing, if rather less plausible, is the following conjecture proposed in [14]."

By the end of that decade, the g-conjecture had become the g-theorem, and algebraic combinatorics had become part of mainstream mathematics,

Peter McMullen and Geoffrey Shephard end their 1971 London Mathematical Society Lecture Notes

Convex Polytopes and the Upper Bound Conjecture
by stating McMullen's recently posed g-conjecture characterizing f-vectors of simplicial convex polytopes with the lead sentence
"Even more intriguing, if rather less plausible, is the following conjecture proposed in [14]."

By the end of that decade, the g-conjecture had become the g-theorem, and algebraic combinatorics had become part of mainstream mathematics, thanks to the work of our honoree.

1 Where it came from
■ Upper Bounds for Polytopes
■ Upper Bounds for Spheres

- Lower Bounds

2 The g-conjecture
■ Sufficiency
■ Necessity
3 Where it went (and is still going)
■ The polytope algebra
■ Nonsimplicial polytopes and the "toric" h-vector
■ Flag f-vectors and the cd-index

- f-vectors of manifolds and other complexes
- The equality case of the generalized lower bound conjecture

■ The g-conjecture for spheres

Upper Bound Theorem(McMullen 1970): If Q is an d-dimensional polytope with n vertices, then for any i,

$$
f_{i}(Q) \leq f_{i}(C(n, d))=: f_{i}(n, d)
$$

where $C(n, d)$ is the cyclic d-polytope with n vertices

Upper Bound Theorem(McMullen 1970): If Q is an d-dimensional polytope with n vertices, then for any i,

$$
f_{i}(Q) \leq f_{i}(C(n, d))=: f_{i}(n, d)
$$

where $C(n, d)$ is the cyclic d-polytope with n vertices, i.e.,

$$
C(n, d):=\operatorname{conv}\left\{x\left(t_{1}\right), x\left(t_{2}\right) \ldots, x\left(t_{n}\right)\right\}
$$

where $t_{1}<t_{2}<\cdots<t_{n}$ and $x(t):=\left(t, t^{2}, \ldots, t^{d}\right)$.

Upper Bound Theorem(McMullen 1970): If Q is an d-dimensional polytope with n vertices, then for any i,

$$
f_{i}(Q) \leq f_{i}(C(n, d))=: f_{i}(n, d)
$$

where $C(n, d)$ is the cyclic d-polytope with n vertices, i.e.,

$$
C(n, d):=\operatorname{conv}\left\{x\left(t_{1}\right), x\left(t_{2}\right) \ldots, x\left(t_{n}\right)\right\}
$$

where $t_{1}<t_{2}<\cdots<t_{n}$ and $x(t):=\left(t, t^{2}, \ldots, t^{d}\right)$.
Proof uses shellability of polytopes (Bruggesser \& Mani).

Upper Bound Theorem(McMullen 1970): If Q is an d-dimensional polytope with n vertices, then for any i,

$$
f_{i}(Q) \leq f_{i}(C(n, d))=: f_{i}(n, d)
$$

where $C(n, d)$ is the cyclic d-polytope with n vertices, i.e.,

$$
C(n, d):=\operatorname{conv}\left\{x\left(t_{1}\right), x\left(t_{2}\right) \ldots, x\left(t_{n}\right)\right\}
$$

where $t_{1}<t_{2}<\cdots<t_{n}$ and $x(t):=\left(t, t^{2}, \ldots, t^{d}\right)$.
Proof uses shellability of polytopes (Bruggesser \& Mani).

Note: It is sufficient to prove this for simplicial polytopes (every face a simplex).

In his 1973 review of the McMullen-Shephard book, H.S.M. Coxeter wrote:

In his 1973 review of the McMullen-Shephard book, H.S.M. Coxeter wrote:
"In 1957, T. Motzkin asserted that, for every d-polytope P with $f_{0}(P)=v, f_{k}(P) \leq f_{k}(v, d)$.

In his 1973 review of the McMullen-Shephard book, H.S.M. Coxeter wrote:
"In 1957, T. Motzkin asserted that, for every d-polytope P with $f_{0}(P)=v, f_{k}(P) \leq f_{k}(v, d)$. Since he never published a proof, this assertion became known as the upper bound conjecture (U.B.C.).

In his 1973 review of the McMullen-Shephard book, H.S.M. Coxeter wrote:
"In 1957, T. Motzkin asserted that, for every d-polytope P with $f_{0}(P)=v, f_{k}(P) \leq f_{k}(v, d)$. Since he never published a proof, this assertion became known as the upper bound conjecture (U.B.C.). It was proved in various special cases, but the present book contains the first complete account of the proof in its full generality.

In his 1973 review of the McMullen-Shephard book, H.S.M. Coxeter wrote:
"In 1957, T. Motzkin asserted that, for every d-polytope P with $f_{0}(P)=v, f_{k}(P) \leq f_{k}(v, d)$. Since he never published a proof, this assertion became known as the upper bound conjecture (U.B.C.). It was proved in various special cases, but the present book contains the first complete account of the proof in its full generality. The authors point out that there exist, for $d \geq 4$, spherical complexes ("triangulations" of the ($d-1$)-sphere) that cannot be realized as boundary complexes of polytopes.

In his 1973 review of the McMullen-Shephard book,
H.S.M. Coxeter wrote:
"In 1957, T. Motzkin asserted that, for every d-polytope P with $f_{0}(P)=v, f_{k}(P) \leq f_{k}(v, d)$. Since he never published a proof, this assertion became known as the upper bound conjecture (U.B.C.). It was proved in various special cases, but the present book contains the first complete account of the proof in its full generality. The authors point out that there exist, for $d \geq 4$, spherical complexes ("triangulations" of the ($d-1$)-sphere) that cannot be realized as boundary complexes of polytopes.
Consequently, although the U.B.C. has now been established for polytopes, it remains a conjecture (though an extremely plausible one) for spherical complexes."

In his 1973 review of the McMullen-Shephard book, H.S.M. Coxeter wrote:
"In 1957, T. Motzkin asserted that, for every d-polytope P with $f_{0}(P)=v, f_{k}(P) \leq f_{k}(v, d)$. Since he never published a proof, this assertion became known as the upper bound conjecture (U.B.C.). It was proved in various special cases, but the present book contains the first complete account of the proof in its full generality. The authors point out that there exist, for $d \geq 4$, spherical complexes ("triangulations" of the ($d-1$)-sphere) that cannot be realized as boundary complexes of polytopes. Consequently, although the U.B.C. has now been established for polytopes, it remains a conjecture (though an extremely plausible one) for spherical complexes."

Earlier speculations by Grünbaum in 1970 and Klee in 1964.

In 1975, Richard Stanley proved the UBC for triangulated spheres,

In 1975, Richard Stanley proved the UBC for triangulated spheres, introducing the face ring and methods of commutative algebra.

In 1975, Richard Stanley proved the UBC for triangulated spheres, introducing the face ring and methods of commutative algebra.

The study of convex polytopes was dramatically changed by this,

In 1975, Richard Stanley proved the UBC for triangulated spheres, introducing the face ring and methods of commutative algebra.

The study of convex polytopes was dramatically changed by this, as was the study of commutative algebra.

In 1975, Richard Stanley proved the UBC for triangulated spheres, introducing the face ring and methods of commutative algebra.

The study of convex polytopes was dramatically changed by this, as was the study of commutative algebra.

The h-vector $\left(h_{0}, \ldots, h_{d}\right)$ of a $(d-1)$-dimensional simplicial complex Δ is defined by the polynomial relation

$$
\sum_{i=0}^{d} h_{i} x^{d-i}=\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}
$$

In 1975, Richard Stanley proved the UBC for triangulated spheres, introducing the face ring and methods of commutative algebra.

The study of convex polytopes was dramatically changed by this, as was the study of commutative algebra.

The h-vector $\left(h_{0}, \ldots, h_{d}\right)$ of a $(d-1)$-dimensional simplicial complex Δ is defined by the polynomial relation

$$
\sum_{i=0}^{d} h_{i} x^{d-i}=\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i} .
$$

The h-vector and the f-vector of a polytope mutually determine each other via the formulas (for $0 \leq i \leq d$):

$$
h_{i}=\sum_{j=0}^{i}(-1)^{i-j}\binom{d-j}{i-j} f_{j-1}, \quad f_{i-1}=\sum_{j=0}^{i}\binom{d-j}{i-j} h_{j} .
$$

$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field
$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.
$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.

Face ring of $\Delta \quad A_{\Delta}:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$.
$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.

Face ring of $\Delta \quad A_{\Delta}:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$.
A_{Δ} is graded K-algebra, i.e., as a K-vector space

$$
A_{\Delta}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots
$$

where A_{i} is subspace of homogeneous polynomials of degree i in $A_{\Delta}\left(A_{0} \cong K\right.$ and $\left.A_{i} \cdot A_{j} \subseteq A_{i+j}\right)$.
$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.

Face ring of $\Delta \quad A_{\Delta}:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$.
A_{Δ} is graded K-algebra, i.e., as a K-vector space

$$
A_{\Delta}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots
$$

where A_{i} is subspace of homogeneous polynomials of degree i in $A_{\Delta}\left(A_{0} \cong K\right.$ and $\left.A_{i} \cdot A_{j} \subseteq A_{i+j}\right)$.
A_{Δ} standard graded K-algebra, i.e., generated as K-algebra by A_{1}.
$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.

Face ring of $\Delta \quad A_{\Delta}:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$.
A_{Δ} is graded K-algebra, i.e., as a K-vector space

$$
A_{\Delta}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots
$$

where A_{i} is subspace of homogeneous polynomials of degree i in $A_{\Delta}\left(A_{0} \cong K\right.$ and $\left.A_{i} \cdot A_{j} \subseteq A_{i+j}\right)$.
A_{Δ} standard graded K-algebra, i.e., generated as K-algebra by A_{1}.
Hilbert function of $A_{\Delta} \quad H(i):=\operatorname{dim}_{K} A_{i}$
$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.

Face ring of $\Delta \quad A_{\Delta}:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$.
A_{Δ} is graded K-algebra, i.e., as a K-vector space

$$
A_{\Delta}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots
$$

where A_{i} is subspace of homogeneous polynomials of degree i in $A_{\Delta}\left(A_{0} \cong K\right.$ and $\left.A_{i} \cdot A_{j} \subseteq A_{i+j}\right)$.
A_{Δ} standard graded K-algebra, i.e., generated as K-algebra by A_{1}.
Hilbert function of $A_{\Delta} \quad H(i):=\operatorname{dim}_{K} A_{i}$
Hilbert series

$$
\sum_{m \geq 0} H(m) t^{m}
$$

$\Delta(d-1)$-dim'l simplicial cmplx, vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}, K$ field $I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ homogeneous ideal generated by nonfaces of Δ, i.e., by all monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ where $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \notin \Delta$.

Face ring of $\Delta \quad A_{\Delta}:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$.
A_{Δ} is graded K-algebra, i.e., as a K-vector space

$$
A_{\Delta}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots
$$

where A_{i} is subspace of homogeneous polynomials of degree i in $A_{\Delta}\left(A_{0} \cong K\right.$ and $\left.A_{i} \cdot A_{j} \subseteq A_{i+j}\right)$.
A_{Δ} standard graded K-algebra, i.e., generated as K-algebra by A_{1}.
Hilbert function of $A_{\Delta} \quad H(i):=\operatorname{dim}_{K} A_{i}$
Hilbert series

$$
\sum_{m \geq 0} H(m) t^{m}=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{d}}
$$

Macaulay conditions
Macaulay(1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$

Macaulay conditions

Macaulay(1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$
\exists set of monomials M in variables $x_{1}, x_{2}, \ldots, x_{k}$, closed under the division order, so that

$$
h_{i}=|\{m \in M \mid \operatorname{deg}(m)=i\}|
$$

Macaulay conditions

Macaulay(1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$
\exists set of monomials M in variables $x_{1}, x_{2}, \ldots, x_{k}$, closed under the division order, so that

$$
h_{i}=|\{m \in M \mid \operatorname{deg}(m)=i\}|
$$

Such a sequence h_{0}, h_{1}, \ldots is called an M-sequence.

Macaulay(1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$
\exists set of monomials M in variables $x_{1}, x_{2}, \ldots, x_{k}$, closed under the division order, so that

$$
h_{i}=|\{m \in M \mid \operatorname{deg}(m)=i\}|
$$

Such a sequence h_{0}, h_{1}, \ldots is called an M-sequence.
Numerical characterization: For positive integers h and i,
$h=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}, \quad n_{i}>n_{i-1}>\cdots>n_{j} \geq j \geq 1$

Macaulay conditions

Macaulay(1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$
\exists set of monomials M in variables $x_{1}, x_{2}, \ldots, x_{k}$, closed under the division order, so that

$$
h_{i}=|\{m \in M \mid \operatorname{deg}(m)=i\}|
$$

Such a sequence h_{0}, h_{1}, \ldots is called an M-sequence.
Numerical characterization: For positive integers h and i,

$$
\begin{gathered}
h=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}, \quad n_{i}>n_{i-1}>\cdots>n_{j} \geq j \geq 1 \\
h^{\langle i\rangle}=\binom{n_{i}+1}{i+1}+\binom{n_{i-1}+1}{i}+\cdots+\binom{n_{j}+1}{j+1} ; \quad 0^{\langle i\rangle}=0
\end{gathered}
$$

Macaulay conditions

Macaulay(1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$ \exists set of monomials M in variables $x_{1}, x_{2}, \ldots, x_{k}$, closed under the division order, so that

$$
h_{i}=|\{m \in M \mid \operatorname{deg}(m)=i\}|
$$

Such a sequence h_{0}, h_{1}, \ldots is called an M-sequence.
Numerical characterization: For positive integers h and i,

$$
\begin{gathered}
h=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}, \quad n_{i}>n_{i-1}>\cdots>n_{j} \geq j \geq 1 \\
h^{\langle i\rangle}=\binom{n_{i}+1}{i+1}+\binom{n_{i-1}+1}{i}+\cdots+\binom{n_{j}+1}{j+1} ; \quad 0^{\langle i\rangle}=0
\end{gathered}
$$

h_{0}, h_{1}, \ldots is an M-sequence (M-vector) \Longleftrightarrow

Macaulay conditions

Macaulay (1927): Sequence of nonnegative integers h_{0}, h_{1}, \ldots is the Hilbert function of a standard graded algebra over field $K \Longleftrightarrow$ \exists set of monomials M in variables $x_{1}, x_{2}, \ldots, x_{k}$, closed under the division order, so that

$$
h_{i}=|\{m \in M \mid \operatorname{deg}(m)=i\}|
$$

Such a sequence h_{0}, h_{1}, \ldots is called an M-sequence.
Numerical characterization: For positive integers h and i,

$$
\begin{gathered}
h=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}, \quad n_{i}>n_{i-1}>\cdots>n_{j} \geq j \geq 1 \\
h^{\langle i\rangle}=\binom{n_{i}+1}{i+1}+\binom{n_{i-1}+1}{i}+\cdots+\binom{n_{j}+1}{j+1} ; \quad 0^{\langle i\rangle}=0
\end{gathered}
$$

h_{0}, h_{1}, \ldots is an M-sequence (M-vector) \Longleftrightarrow

$$
h_{0}=1 \quad \text { and for each } \quad i \geq 1, \quad 0 \leq h_{i+1} \leq h_{i}^{\langle i\rangle}
$$

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

which implies (for polytopes) $f_{i}(P) \leq f_{i}(C(n, d)), i \leq d-1$

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

which implies (for polytopes) $f_{i}(P) \leq f_{i}(C(n, d)), i \leq d-1$
By Macaulay conditions, inequality on $h_{i}^{\prime} s$ would follow if h_{0}, h_{1}, \ldots were an M-sequence, so a Hilbert function.

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

which implies (for polytopes) $f_{i}(P) \leq f_{i}(C(n, d)), i \leq d-1$
By Macaulay conditions, inequality on $h_{i}^{\prime} s$ would follow if h_{0}, h_{1}, \ldots were an M-sequence, so a Hilbert function.

Stanley's Upper Bound Theorem (1975): If A_{Δ} is a Cohen-Macaulay ring, then h_{0}, h_{1}, \ldots is an M-sequence.

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

which implies (for polytopes) $f_{i}(P) \leq f_{i}(C(n, d)), i \leq d-1$
By Macaulay conditions, inequality on $h_{i}^{\prime} s$ would follow if h_{0}, h_{1}, \ldots were an M-sequence, so a Hilbert function.

Stanley's Upper Bound Theorem (1975): If A_{Δ} is a Cohen-Macaulay ring, then h_{0}, h_{1}, \ldots is an M-sequence.

Reisner(1976): A_{Δ} is Cohen-Macaulay ring \Longleftrightarrow

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

which implies (for polytopes) $f_{i}(P) \leq f_{i}(C(n, d)), i \leq d-1$
By Macaulay conditions, inequality on $h_{i}^{\prime} s$ would follow if h_{0}, h_{1}, \ldots were an M-sequence, so a Hilbert function.

Stanley's Upper Bound Theorem (1975): If A_{Δ} is a
Cohen-Macaulay ring, then h_{0}, h_{1}, \ldots is an M-sequence.
Reisner(1976): A_{Δ} is Cohen-Macaulay ring \Longleftrightarrow Δ is a Cohen-Macaulay complex,

To prove UBC, McMullen showed for simplicial P with $f_{0}(P)=n$,

$$
h_{i} \leq\binom{ n-d+i-1}{i}, \quad 0 \leq i \leq d
$$

which implies (for polytopes) $f_{i}(P) \leq f_{i}(C(n, d)), i \leq d-1$
By Macaulay conditions, inequality on $h_{i}^{\prime} s$ would follow if h_{0}, h_{1}, \ldots were an M-sequence, so a Hilbert function.

Stanley's Upper Bound Theorem (1975): If A_{Δ} is a
Cohen-Macaulay ring, then h_{0}, h_{1}, \ldots is an M-sequence.
Reisner(1976): A_{Δ} is Cohen-Macaulay ring \Longleftrightarrow
Δ is a Cohen-Macaulay complex, e.g., a sphere!

Note: $A_{\Delta} \mathrm{CM}$ means A_{Δ} is free module over the polynomial subring $K\left[\theta_{1}, \ldots, \theta_{d}\right]$ where $\theta_{1}, \ldots, \theta_{d}$ are generic forms in A_{1}

Note: $A_{\Delta} \mathrm{CM}$ means A_{Δ} is free module over the polynomial subring $K\left[\theta_{1}, \ldots, \theta_{d}\right]$ where $\theta_{1}, \ldots, \theta_{d}$ are generic forms in A_{1} (a.k.a. linear system of parameters)

Note: $A_{\Delta} \mathrm{CM}$ means A_{Δ} is free module over the polynomial subring $K\left[\theta_{1}, \ldots, \theta_{d}\right]$ where $\theta_{1}, \ldots, \theta_{d}$ are generic forms in A_{1} (a.k.a. linear system of parameters)

The proof of the UBT shows that $h(\Delta)$ is the Hilbert function of the graded algebra

$$
B:=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle=B_{0} \oplus B_{1} \oplus \cdots \oplus B_{d}
$$

Note: $A_{\Delta} \mathrm{CM}$ means A_{Δ} is free module over the polynomial subring $K\left[\theta_{1}, \ldots, \theta_{d}\right]$ where $\theta_{1}, \ldots, \theta_{d}$ are generic forms in A_{1} (a.k.a. linear system of parameters)

The proof of the UBT shows that $h(\Delta)$ is the Hilbert function of the graded algebra

$$
B:=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle=B_{0} \oplus B_{1} \oplus \cdots \oplus B_{d}
$$

i.e., $h_{i}=\operatorname{dim}_{K} B_{i}$

Lower Bound Theorem [Barnette (1971,1973)]: For a d-dimensional simplicial convex polytope P
(1) $f_{d-1} \geq(d-1) f_{0}-(d+1)(d-2)$, and
(2) $f_{k} \geq\binom{ d}{k} f_{0}-\binom{d+1}{k+1} k$ for all $1 \leq k \leq d-2$

Lower Bound Theorem [Barnette (1971,1973)]: For a d-dimensional simplicial convex polytope P
(1) $f_{d-1} \geq(d-1) f_{0}-(d+1)(d-2)$, and
(2) $f_{k} \geq\binom{ d}{k} f_{0}-\binom{d+1}{k+1} k$ for all $1 \leq k \leq d-2$

The g-vector $\left(g_{0}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ of P is defined by $g_{0}=1$ and $g_{i}=h_{i}-h_{i-1}$, for $i=1 \ldots\lfloor d / 2\rfloor$.

Lower Bound Theorem [Barnette $(1971,1973)]$: For a d-dimensional simplicial convex polytope P
(1) $f_{d-1} \geq(d-1) f_{0}-(d+1)(d-2)$, and
(2) $f_{k} \geq\binom{ d}{k} f_{0}-\binom{d+1}{k+1} k$ for all $1 \leq k \leq d-2$

The g-vector $\left(g_{0}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ of P is defined by $g_{0}=1$ and $g_{i}=h_{i}-h_{i-1}$, for $i=1 \ldots\lfloor d / 2\rfloor$.

Generalized Lower Bound Conjecture[McMullen \& Walkup (1971)]: Let P be a simplicial d-polytope. Then
(1) $g_{i} \geq 0, i \leq d / 2$, and

Lower Bound Theorem [Barnette $(1971,1973)]$: For a d-dimensional simplicial convex polytope P
(1) $f_{d-1} \geq(d-1) f_{0}-(d+1)(d-2)$, and
(2) $f_{k} \geq\binom{ d}{k} f_{0}-\binom{d+1}{k+1} k$ for all $1 \leq k \leq d-2$

The g-vector $\left(g_{0}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ of P is defined by $g_{0}=1$ and $g_{i}=h_{i}-h_{i-1}$, for $i=1 \ldots\lfloor d / 2\rfloor$.

Generalized Lower Bound Conjecture[McMullen \& Walkup (1971)]: Let P be a simplicial d-polytope. Then
(1) $g_{i} \geq 0, i \leq d / 2$, and
(2) $g_{k}=0$ for some $k \leq d / 2 \Leftrightarrow P$ is $(k-1)$-stacked, i.e., there is a triangulation of (the d-ball) P all of whose faces of dimension at most $d-k$ are faces of P.

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and
(2) the g-vector $g=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ is an M-vector

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and
(2) the g-vector $g=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ is an M-vector

Note:
(1) is the Dehn-Sommerville equations for simplicial polytopes and spheres, known since 1927

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and
(2) the g-vector $g=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ is an M-vector

Note:
(1) is the Dehn-Sommerville equations for simplicial polytopes and spheres, known since 1927
(2) includes $g_{i} \geq 0$ from the GLB conjecture plus the pseudopower inequalities

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and
(2) the g-vector $g=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ is an M-vector

Note:
(1) is the Dehn-Sommerville equations for simplicial polytopes and spheres, known since 1927
(2) includes $g_{i} \geq 0$ from the GLB conjecture plus the pseudopower inequalities (McMullen was unaware of M-vectors!)

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and
(2) the g-vector $g=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ is an M-vector

Note:
(1) is the Dehn-Sommerville equations for simplicial polytopes and spheres, known since 1927
(2) includes $g_{i} \geq 0$ from the GLB conjecture plus the pseudopower inequalities (McMullen was unaware of M-vectors!)
(3) To prove necessity you have to start with a polytope and produce an order ideal of monomials;

McMullen's g-conjecture (1971): A vector $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of nonnegative integers is the h vector of a simplicial d-polytope P if and only if
(1) $h_{i}=h_{d-i}$ for $i=0, \ldots, d$, and
(2) the g-vector $g=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$ is an M-vector

Note:
(1) is the Dehn-Sommerville equations for simplicial polytopes and spheres, known since 1927
(2) includes $g_{i} \geq 0$ from the GLB conjecture plus the pseudopower inequalities (McMullen was unaware of M-vectors!)
(3) To prove necessity you have to start with a polytope and produce an order ideal of monomials; to prove sufficiency you get to start with a convenient order ideal of monomials and use it to make a polytope.

To construct a $(d-1)$-sphere with the desired h-vector

To construct a $(d-1)$-sphere with the desired h-vector
(1) Given M-vector $\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$, let M be the order ideal consisting of $\forall i$ the first g_{i} monomials in (reverse) lexicographic order on variables X_{1}, \ldots, X_{n} where $n=g_{1}+d+1$.

To construct a $(d-1)$-sphere with the desired h-vector
(1) Given M-vector $\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$, let M be the order ideal consisting of $\forall i$ the first g_{i} monomials in (reverse) lexicographic order on variables X_{1}, \ldots, X_{n} where $n=g_{1}+d+1$.
(2) From M, construct collection of facets in the cyclic polytope $C(n, d+1)$. (Monomials determine how far pairs are shifted.)

To construct a $(d-1)$-sphere with the desired h-vector
(1) Given M-vector $\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$, let M be the order ideal consisting of $\forall i$ the first g_{i} monomials in (reverse) lexicographic order on variables X_{1}, \ldots, X_{n} where $n=g_{1}+d+1$.
(2) From M, construct collection of facets in the cyclic polytope $C(n, d+1)$. (Monomials determine how far pairs are shifted.)
(3) The simplicial complex Δ generated by these facets will be a shellable d-ball and have $h(\Delta)=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}, 0, \ldots, 0\right)$.

To construct a $(d-1)$-sphere with the desired h-vector
(1) Given M-vector $\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$, let M be the order ideal consisting of $\forall i$ the first g_{i} monomials in (reverse) lexicographic order on variables X_{1}, \ldots, X_{n} where $n=g_{1}+d+1$.
(2) From M, construct collection of facets in the cyclic polytope $C(n, d+1)$. (Monomials determine how far pairs are shifted.)
(3) The simplicial complex Δ generated by these facets will be a shellable d-ball and have $h(\Delta)=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}, 0, \ldots, 0\right)$.
(4) Then $\partial \Delta$ is a $(d-1)$-sphere with $h(\partial \Delta)=\left(h_{0}, \ldots, h_{d}\right)$.

To construct a $(d-1)$-sphere with the desired h-vector
(1) Given M-vector $\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}\right)$, let M be the order ideal consisting of $\forall i$ the first g_{i} monomials in (reverse) lexicographic order on variables X_{1}, \ldots, X_{n} where $n=g_{1}+d+1$.
(2) From M, construct collection of facets in the cyclic polytope $C(n, d+1)$. (Monomials determine how far pairs are shifted.)
(3) The simplicial complex Δ generated by these facets will be a shellable d-ball and have $h(\Delta)=\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}, 0, \ldots, 0\right)$.
(4) Then $\partial \Delta$ is a $(d-1)$-sphere with $h(\partial \Delta)=\left(h_{0}, \ldots, h_{d}\right)$.
(5) Choose $t_{1}, t_{2}, \ldots, t_{n}$ defining $C(n, d+1)$ so that Δ is precisely the set of facets seen from some point $v \notin C(n, d+1)$. Then $\partial \Delta$ will be the boundary of a d-polytope.

Place a point z outside a polytope Q; some of the faces of Q are visible from z.

Place a point z outside a polytope Q; some of the faces of Q are visible from z.

Place a point z outside a polytope Q; some of the faces of Q are visible from z.

The shadow boundary is the boundary of the visible region,

Place a point z outside a polytope Q; some of the faces of Q are visible from z.

The shadow boundary is the boundary of the visible region, a polytope since it is a slice of $\operatorname{conv}(Q \cup\{z\})$.

Necessity: Stanley

In his 1978 review of Stanley's UBT paper, McMullen mused:

In his 1978 review of Stanley's UBT paper, McMullen mused:
"The theorem has a similar form to and is probably a useful step towards a conjecture of the reviewer ..., which would characterize all possible f-vectors $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ of simplicial d-polytopes, and, conceivably, also of all triangulations of $(d-1)$-spheres."

In his 1978 review of Stanley's UBT paper, McMullen mused:
"The theorem has a similar form to and is probably a useful step towards a conjecture of the reviewer ..., which would characterize all possible f-vectors $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ of simplicial d-polytopes, and, conceivably, also of all triangulations of $(d-1)$-spheres."

Stanley had similar musings in print as early as 1975:

In his 1978 review of Stanley's UBT paper, McMullen mused:
"The theorem has a similar form to and is probably a useful step towards a conjecture of the reviewer ..., which would characterize all possible f-vectors $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ of simplicial d-polytopes, and, conceivably, also of all triangulations of $(d-1)$-spheres."

Stanley had similar musings in print as early as 1975:
"Conjectures 1 and 2 are closely related to the main conjecture of [5]." (= g-conjecture)

In his 1978 review of Stanley's UBT paper, McMullen mused:
"The theorem has a similar form to and is probably a useful step towards a conjecture of the reviewer ..., which would characterize all possible f-vectors $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ of simplicial d-polytopes, and, conceivably, also of all triangulations of $(d-1)$-spheres."

Stanley had similar musings in print as early as 1975:
"Conjectures 1 and 2 are closely related to the main conjecture of [5]." (= g-conjecture)

Basically, we have a graded algebra B with Hilbert function $h(P)$, and we want another graded algebra with Hilbert function $g(P)$.

In his 1978 review of Stanley's UBT paper, McMullen mused:
"The theorem has a similar form to and is probably a useful step towards a conjecture of the reviewer ..., which would characterize all possible f-vectors ($f_{0}, f_{1}, \ldots, f_{d-1}$) of simplicial d-polytopes, and, conceivably, also of all triangulations of $(d-1)$-spheres."

Stanley had similar musings in print as early as 1975:
"Conjectures 1 and 2 are closely related to the main conjecture of [5]." (= g-conjecture)

Basically, we have a graded algebra B with Hilbert function $h(P)$, and we want another graded algebra with Hilbert function $g(P)$.

Enter, toric varieties
(1) Given (rational) simplicial polytope P with origin in interior, form the fan Σ by forming the cone on each face σ of P (union of all half rays through points of σ).
(1) Given (rational) simplicial polytope P with origin in interior, form the fan Σ by forming the cone on each face σ of P (union of all half rays through points of σ).
(2) The toric variety X_{P} on this fan will have cohomology ring isomorphic to the graded algebra $B=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle$, where the θ_{i} are the linear system of parameters determined by the vertex coordinates of P.
(1) Given (rational) simplicial polytope P with origin in interior, form the fan Σ by forming the cone on each face σ of P (union of all half rays through points of σ).
(2) The toric variety X_{P} on this fan will have cohomology ring isomorphic to the graded algebra $B=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle$, where the θ_{i} are the linear system of parameters determined by the vertex coordinates of P.
(3) Thus, the Betti numbers of X_{P} are $\beta_{2 i}=\operatorname{dim} B_{i}=h_{i}$.
(1) Given (rational) simplicial polytope P with origin in interior, form the fan Σ by forming the cone on each face σ of P (union of all half rays through points of σ).
(2) The toric variety X_{P} on this fan will have cohomology ring isomorphic to the graded algebra $B=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle$, where the θ_{i} are the linear system of parameters determined by the vertex coordinates of P.
(3) Thus, the Betti numbers of X_{P} are $\beta_{2 i}=\operatorname{dim} B_{i}=h_{i}$.
(4) The Hard Lefschetz Theorem for X_{P} gives an element $\omega \in B_{1}$ such that multiplying by ω gives injective maps $B_{i-1} \longrightarrow B_{i}$, for $i \leq d / 2$.
(1) Given (rational) simplicial polytope P with origin in interior, form the fan Σ by forming the cone on each face σ of P (union of all half rays through points of σ).
(2) The toric variety X_{P} on this fan will have cohomology ring isomorphic to the graded algebra $B=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle$, where the θ_{i} are the linear system of parameters determined by the vertex coordinates of P.
(3) Thus, the Betti numbers of X_{P} are $\beta_{2 i}=\operatorname{dim} B_{i}=h_{i}$.
(4) The Hard Lefschetz Theorem for X_{P} gives an element $\omega \in B_{1}$ such that multiplying by ω gives injective maps $B_{i-1} \longrightarrow B_{i}$, for $i \leq d / 2$.
(5) Consequently the algebra $C:=B /\langle\omega\rangle$ will have $g(P)$ as its Hilbert function.
(1) Given (rational) simplicial polytope P with origin in interior, form the fan Σ by forming the cone on each face σ of P (union of all half rays through points of σ).
(2) The toric variety X_{P} on this fan will have cohomology ring isomorphic to the graded algebra $B=A_{\Delta} /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle$, where the θ_{i} are the linear system of parameters determined by the vertex coordinates of P.
(3) Thus, the Betti numbers of X_{P} are $\beta_{2 i}=\operatorname{dim} B_{i}=h_{i}$.
(4) The Hard Lefschetz Theorem for X_{P} gives an element $\omega \in B_{1}$ such that multiplying by ω gives injective maps $B_{i-1} \longrightarrow B_{i}$, for $i \leq d / 2$.
(5) Consequently the algebra $C:=B /\langle\omega\rangle$ will have $g(P)$ as its Hilbert function.
(0) Thus $g(P)$ is an M-vector.

McMullen $(1989,1993)$ gave a proof of necessity via his "polytope algebra", mirroring Stanley's proof and effectively proving the Hard Lefschetz Theorem for toric varieties via methods of convex analysis, thereby eliminating the need to think explicitly about toric varieties.

McMullen $(1989,1993)$ gave a proof of necessity via his "polytope algebra", mirroring Stanley's proof and effectively proving the Hard Lefschetz Theorem for toric varieties via methods of convex analysis, thereby eliminating the need to think explicitly about toric varieties.

Or, as he once (only half-jokingly) put it,

McMullen $(1989,1993)$ gave a proof of necessity via his "polytope algebra", mirroring Stanley's proof and effectively proving the Hard Lefschetz Theorem for toric varieties via methods of convex analysis, thereby eliminating the need to think explicitly about toric varieties.

Or, as he once (only half-jokingly) put it, "ridding the subject of this malignancy".

Stanley (1987) extended the toric variety argument to arbitrary rational (not necessarily simplicial) polytopes by means of intersection cohomology Betti numbers (the so-called "toric" h-vector, a generalization of the simplicial h-vevtor).

Stanley (1987) extended the toric variety argument to arbitrary rational (not necessarily simplicial) polytopes by means of intersection cohomology Betti numbers (the so-called "toric" h-vector, a generalization of the simplicial h-vevtor).

The resulting toric g-vector is nonnegative (by Hard Lefschetz for IH), but not an M-vector (since IH is not a ring).

Stanley (1987) extended the toric variety argument to arbitrary rational (not necessarily simplicial) polytopes by means of intersection cohomology Betti numbers (the so-called "toric" h-vector, a generalization of the simplicial h-vevtor).

The resulting toric g-vector is nonnegative (by Hard Lefschetz for IH), but not an M-vector (since IH is not a ring).

Karu (2004) showed toric g-vector nonnegative for all polytopes by an extension of the Hard Lefschetz Theorem to "combinatorial intersection homology" (piecewise polynomials on the fan but no toric variety).

Bayer \& B_ (1985) extended Dehn-Sommerville equations to the flag f-vectors of polytopes and, more generally, Eulerian posets, showing only Fibonacci many flag numbers are needed.

Bayer \& B_ (1985) extended Dehn-Sommerville equations to the flag f-vectors of polytopes and, more generally, Eulerian posets, showing only Fibonacci many flag numbers are needed.

Fine; Bayer \& Klapper (1991) define cd-index for Eulerian posets, capturing the Fibonacci amount of information in the flag vectors.

Bayer \& B_ (1985) extended Dehn-Sommerville equations to the flag f-vectors of polytopes and, more generally, Eulerian posets, showing only Fibonacci many flag numbers are needed.

Fine; Bayer \& Klapper (1991) define cd-index for Eulerian posets, capturing the Fibonacci amount of information in the flag vectors.

Stanley (1994) shows cd-index of polytopes is nonnegative. (Conj. of Fine)

Bayer \& B_ (1985) extended Dehn-Sommerville equations to the flag f-vectors of polytopes and, more generally, Eulerian posets, showing only Fibonacci many flag numbers are needed.

Fine; Bayer \& Klapper (1991) define cd-index for Eulerian posets, capturing the Fibonacci amount of information in the flag vectors.

Stanley (1994) shows cd-index of polytopes is nonnegative. (Conj. of Fine)

B_ \& Ehrenborg(2000) show that cd-index of polytopes is minimized on simplices. (Conj. of Stanley)

Bayer \& B_ (1985) extended Dehn-Sommerville equations to the flag f-vectors of polytopes and, more generally, Eulerian posets, showing only Fibonacci many flag numbers are needed.

Fine; Bayer \& Klapper (1991) define cd-index for Eulerian posets, capturing the Fibonacci amount of information in the flag vectors.

Stanley (1994) shows cd-index of polytopes is nonnegative. (Conj. of Fine)

B_ \& Ehrenborg(2000) show that cd-index of polytopes is minimized on simplices. (Conj. of Stanley)

Karu (2006) shows cd-index of spheres (Gorenstein* posets) is nonnegative. (Conj. of Stanley)

Bayer \& B_ (1985) extended Dehn-Sommerville equations to the flag f-vectors of polytopes and, more generally, Eulerian posets, showing only Fibonacci many flag numbers are needed.

Fine; Bayer \& Klapper (1991) define cd-index for Eulerian posets, capturing the Fibonacci amount of information in the flag vectors.

Stanley (1994) shows cd-index of polytopes is nonnegative. (Conj. of Fine)

B_ \& Ehrenborg(2000) show that cd-index of polytopes is minimized on simplices. (Conj. of Stanley)

Karu (2006) shows cd-index of spheres (Gorenstein* posets) is nonnegative. (Conj. of Stanley)

Ehrenborg \& Karu (2007) show that cd-index of Gorenstein* lattices is minimized on simplices. (Conj. of Stanley)

Novik (1998): Upper bound theorems for homology manifolds

Novik (1998): Upper bound theorems for homology manifolds

Novik \& Swartz (2012): Face numbers of pseudomanifolds with isolated singularities.

Novik (1998): Upper bound theorems for homology manifolds

Novik \& Swartz (2012): Face numbers of pseudomanifolds with isolated singularities.

Kolins (2011) Studied f-vectors of triangulated balls

Novik (1998): Upper bound theorems for homology manifolds

Novik \& Swartz (2012): Face numbers of pseudomanifolds with isolated singularities.

Kolins (2011) Studied f-vectors of triangulated balls

Stanley (and many others): f-vectors of simplicial posets

Murai \& Nevo (2013) proved the equality case of the GLB using methods of commutative algebra. (See FPSAC 2014.)

There have been many attempts to extend the GLB Theorem to triangulated spheres.

There have been many attempts to extend the GLB Theorem to triangulated spheres.

There have been at least three incorrect proofs announced since 1990.

There have been many attempts to extend the GLB Theorem to triangulated spheres.

There have been at least three incorrect proofs announced since 1990. Is this the Bermuda triangle of algebraic combinatorics?

There have been many attempts to extend the GLB Theorem to triangulated spheres.

There have been at least three incorrect proofs announced since 1990. Is this the Bermuda triangle of algebraic combinatorics?

McMullen-Walkup (1971): "Nevertheless, there are real differences as well as deep theoretical questions to be met with in extending results on simplicial polytopes to triangulated spheres (see Grünbaum [1970]). We have therefore satisfied ourselves with venturing the Generalized Lower-bound Conjecture for polytopes only."

Happy Birthday Richard!

