PHYSICAL MATHEMATICS SEMINAR TOPIC: MODELING THE FORMATION OF DROPLETS IN MICROSCALE JETTING DEVICES SPEAKER: PROFESSOR ELBRIDGE GERRY PUCKETT Department of Mathematics University of California, Davis ABSTRACT: Micro-scale jetting devices are used in a variety of applications, from ink jet printers to microelectronics manufacturing, biomedical procedures and equipment (e.g., dye-assisted laser surgery), medical diagnostics manufacturing, micro-optics manufacturing, IC thermal management and dispensing small amounts of chemicals in Neuroscience research. In this talk I will describe recent research directed at developing a numerical method for modeling these devices. I will begin with a discussion of the physical processes which characterize micro-scale jetting, and which make them difficult to model; follow with a general description of a numerical method I have developed - in collaboration with others - with which one can modeling the entire jetting process; from the application of a time dependent pressure or velocity pulse at the inflow boundary of the nozzle, through the formation of the lead and satellite droplets, to the eventual coalescence of some or all of the satellite droplets; and end with an overview of some of the open research problems which remain to be addressed in this area, such as the development of models for piezo electrically and thermally induced jetting. DATE: TUESDAY, NOVEMBER 14, 2000 TIME: 2:30 PM LOCATION: Building 2, Room 338 Refreshments will be served at 3:30 PM in Room 2-349 Massachusetts Institute of Technology Department of Mathematics Cambridge, MA 02139