The question is equivalent to testing isomorphism of hypergraphs on m vertices in `simply-exponential' c^m time. Such better-than-brute-force (m!) isomorphism had once appeared elusive even for ordinary graphs on m vertices. However, applying elementary group theory, we now handle the graph case using only naive divide-and-conquer. At first glance, there appear to be serious bottlenecks in an extension to hypergraphs. Nevertheless, a dynamic-programming reorganization settles the hypergraph problem as well. In turn, this yields polynomial time for Boolean-function equivalence. In fact, the procedure is strongly parallelizable.

This is a joint meeting with the **Theory of Computation Seminar**.
}
}