Catalan paths and Quasisymmetric functions
Nantel Bergeron
York University
November 2,
4:15pm
refreshments at 3:45pm
2338
ABSTRACT

We investigate the quotient ring $R$ of the ring of formal power
series $\Q[[x_1,x_2,\ldots]]$ over the closure of the ideal generated
by nonconstant
quasisymmetric functions. We show that a Hilbert basis of the quotient is
naturally indexed by Catalan paths (infinite Dyck paths). We also
give a filtration of
ideals related to Catalan paths from $(0,0)$ and above the line
$y=xk$. We investigate as well the quotient ring $R_n$ of
polynomial ring in $n$ variables over the ideal generated by nonconstant
quasisymmetric polynomials. We show that the dimension of $R_n$ is
bounded above by
the $n$th Catalan number. [the equality is expected]

Speaker's Contact Info: bergeron(atsign)mathstat.yorku.ca
Return to seminar home page
Page loaded on October 02, 2001 at 10:38 PM.

Copyright © 199899, Sara C. Billey.
All rights reserved.

