We are concerned with the questions of global regularity vs. finite time breakdown in Eulerian dynamics, \(u_t + u \cdot \nabla_x u = \nabla_x F \). The global behavior is dictated by the different models of the forcing \(F = F(u, \nabla u, \ldots) \). To address these questions, we propose the notion Critical Threshold (CT), where a conditional finite time breakdown depends on whether the initial configuration crosses intrinsic critical surfaces which guarantee global existence. With the standard energy method approach one studies the growth of \(\nabla_x u \). Our approach is based on spectral dynamics, tracing the eigenvalues, \(\lambda := \lambda(\nabla_x u) \), which determine the boundaries of CT surfaces in configuration space.

We demonstrate the CT phenomena with several prototype models. We begin with the \(n \)-dimensional restricted Euler equations, obtaining a surprising \(4 \)-dimensional global existence for a large set of sub-critical initial data. The second example consists of the corresponding \(n \)-dimensional restricted Euler-Poisson equations. Here we identify a set of \([n/2] \) spectral invariants, which lead to a remarkable characterization of two-dimensional sub-critical initial configurations with global smooth solutions. Finally, we show how the CT phenomenon associated with rotation prevents finite-time breakdown, which, in turn, yields a long-time regularity regime in the shallow-water equations. Our study reveals the critical dependence of the two-dimensional CT phenomenon on the initial spectral gap, \(\lambda_2(0) - \lambda_1(0) \).