CONVEX HULL OF PARKING FUNCTIONS OF LENGTH n UROP + FINAL PAPER, SUMMER 2020

ARUZHAN AMANBAYEVA
MENTOR: DANIELLE WANG
PROJECT SUGGESTED BY RICHARD STANLEY

Abstract

We consider a polytope P_{n}, which is the convex hull in \mathbb{R}^{n} of all parking functions of length n. Stanley found the number of vertices and the number of facets of P_{n}. In this paper we provide the number of faces of arbitrary dimension, the volume, and the number of integer points in P_{n}.

1. Introduction

Let P_{n} be the convex hull in \mathbb{R}^{n} of all parking functions of length n. The problem proposed by Stanley in [1] asks to determine
(a) the number of vertices of P_{n},
(b) the number of ($n-1$)-dimensional faces, i.e. facets, of P_{n},
(c) the number of integer points in P_{n}, i.e., the number of elements of $\mathbb{Z}^{n} \cap P_{n}$,
(d) the n-dimensional volume of P_{n}.

In a private communication with the author, Stanley showed the proof that the vertices of P_{n} are the permutations of

$$
(\underbrace{1, \ldots, 1}_{k \text { ones }}, k+1, k+2, \ldots, n),
$$

for $1 \leq k \leq n$. This is proven in two parts. First, any parking function $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ that has a term $a_{i}>1$ such that $\left(a_{1}, \ldots, a_{i-1}, a_{i}+1, a_{i+1}, \ldots, a_{n}\right)$ is also a parking function, is a convex combination of two other parking functions. Second, if $\alpha=(1, \ldots, 1, k+1, k+$ $2, \ldots, n)$ is a convex combination of $\beta, \gamma \in P_{n}$, then by the properties of parking functions, $\beta=\gamma=\alpha$, meaning α is a vertex of P_{n}.
From this observation, the number of vertices of P_{n} is

$$
n!\left(\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)
$$

Stanley also showed that the defining inequalities of P_{n} are,

$$
\begin{aligned}
& 1 \leq x_{i} \leq n, \leq i \leq n \\
& x_{i}+x_{j} \leq(n-1)+n, i<j \\
& x_{i}+x_{j}+x_{k} \leq(n-2)+(n-1)+n, i<j<k \\
& x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}} \leq 3+4+\cdots+n, i_{1}<i_{2}<\cdots<i_{n-2} \\
& x_{1}+x_{2}+\cdots+x_{n} \leq 1+2+\cdots+n .
\end{aligned}
$$

Thus, the number of facets is the number of these inequalities, which is equal to

$$
2^{n}-1
$$

Organization of the paper. In Section 2, we find the number of edges of P_{n} by understanding which pairs of vertices create an edge and using the formula obtained by Stanley for the number of vertices of P_{n}. In Section 3 , we consider the general case of d-dimensional faces of P_{n}, determine their structure, and derive the formula for their number by using Stirling numbers of the second kind. In Section 4, we prove that the sequence $\left\{V_{n}\right\}$ of volumes of P_{n} satisfies a nice recurrence relation and find the exponential generating function of this sequence. Lastly, in Section 5, we show that the set of lattice points of P_{n} can be
divided into sets of lattice points of several permutohedrons, which have a formula given by Postnikov in [2].

Acknowledgements. I would like to thank Prof. David Jerison, Prof. Ankur Moitra, and Dr. Slava Gerovitch for organizing the UROP+ program, and the Paul E. Gray (1954) UROP Fund for generously supporting my research. Also, thanks to Prof. Richard Stanley for suggesting this problem and for his guidance along the way. Huge thanks to Danielle Wang for her great mentoring and for helping me understand every unclear detail during this research. Finally, I would like to give thanks to Daniyar Aubekerov who helped me with coding and provided emotional support throughout the past three months.

2. Edges

Theorem 2.1. The number of edges of P_{n} is equal to

$$
\frac{n \cdot n!}{2}\left(\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right) .
$$

Definition 2.2. We know that parking functions which are vertices of P_{n} are permutations of $(1,1, \ldots, 1, k+1, k+2, \ldots, n)(1 \leq k \leq n)$. For every such vertex we define its layer to be equal to $n-k$. We denote the layer of x by $L(x)$.

Proposition 2.3. If v_{1} and v_{2} are two vertices of P_{n} such that $v_{1} v_{2}$ is an edge, then $\left|L\left(v_{1}\right)-L\left(v_{2}\right)\right| \leq 1$, meaning v_{1} and v_{2} are either from neighboring layers or from the same layer.

Proof. Let $c \cdot x$ be the dot product $c_{1} x_{1}+\cdots+c_{n} x_{n}$ of vectors $c, x \in \mathbb{R}^{n}$. If $v_{1} v_{2}$ is an edge, then there is c such that $c \cdot v_{1}=c \cdot v_{2}>c \cdot v$ for any vertex v of P_{n} distinct from v_{1} and v_{2}. Since P_{n} is invariant under coordinate permutation, without loss of generality we may assume $c_{1} \leq \cdots \leq c_{n}$.

Suppose v_{1} and v_{2} are $t \geq 2$ layers apart from each other, so let v_{1} be a permutation of $(1,1, \ldots, 1, k, k+1, \ldots, n)$ and v_{2} be a permutation of $(1,1, \ldots, 1, k+t, k+t+1, \ldots, n)$, where $1 \leq k<k+2 \leq k+t \leq n$. Since v_{1} and v_{2} are unique permutations of $(1,1, \ldots, 1, k, k+$ $1, \ldots, n)$ and $(1,1, \ldots, 1, k, k+1, \ldots, n)$, respectively, that maximize $c \cdot v$, by the rearrangement inequality, $v_{1}=(1,1, \ldots, 1, k, k+1, \ldots, n), v_{2}=(1,1, \ldots, 1, k+t, k+t+1, \ldots, n)$, and $c_{k-1}<c_{k}<\cdots<c_{n}$. If $c_{k+t-1} \geq 0$, then for $v_{3}=(1,1, \ldots, 1, k+t-1, k+t \ldots, n) \in P_{n}$ which is distinct from v_{1} and v_{2}, we have $c \cdot v_{3} \geq c \cdot v_{2}$, a contradiction. Otherwise, if $c_{k+t-1}<$ 0 , we have $c_{k}<\cdots<c_{k+t-1}<0$, so $c \cdot v_{1}-c \cdot v_{2}=c_{k}(k-1)+c_{k+1} k+\cdots+c_{k+t-1}(k+t-2)<0$, meaning $c \cdot v_{1}<c \cdot v_{2}$, a contradiction. Thus, v_{1} and v_{2} are at most one layer apart from each other.

Proposition 2.4. For each vertex v of P_{n}, there are exactly n edges of P_{n} with v as one of the vertices.

Proof. Suppose $v=v_{k}$ is on layer $n-k$. Since P_{n} is invariant under coordinate permutation, without loss of generality we may assume $v_{k}=(1, \ldots, 1, k+1, \ldots, n)$. Let $v_{k} v_{k}^{\prime}$ be an edge of P_{n}, then there is $c \in \mathbb{R}^{n}$ such that $c \cdot v_{k}=c \cdot v_{k}^{\prime}>c \cdot v$ for any vertex v of P_{n} distinct from v_{k} and v_{k}^{\prime}. By the rearrangement inequality, $c_{i} \leq c_{k+1} \leq \cdots \leq c_{n}$ for any $1 \leq i \leq k$.
If v_{k}^{\prime} is on the same layer as v_{k}, then v_{k}^{\prime} is a permutation of $(1, \ldots, 1, k+1, \ldots, n)$. If $c_{k+1} \leq 0$, then changing the $(k+1)$-st coordinate of v_{k} from $k+1$ to 1 will give another vertex v of P_{n} for which $c \cdot v \geq c \cdot v_{k}$, contradiction. Thus $0<c_{k+1} \leq \cdots \leq c_{n}$. If $2 \leq k \leq n$ and $c_{i} \geq 0$ for some $1 \leq i \leq k$, then changing the i-th coordinate of v_{k} from 1 to k will give another vertex v of P_{n} for which $c \cdot v \geq c \cdot v_{k}$, a contradiction. Thus, $c_{i}<0$ for $1 \leq i \leq k$ if $k \geq 2$.

By the rearrangement inequality, for $k=1, c_{1}<\cdots<c_{j}=c_{j+1}<\cdots<c_{n}$, where $1 \leq j \leq n-1$, and for $k \geq 2,0<c_{k+1}<\cdots<c_{j}=c_{j+1}<\cdots<c_{n}$ where $k+1 \leq j \leq n-1$. Thus, v_{k} and v_{k}^{\prime} differ from each other by exactly one swap of two neighboring coordinates $(i, i+1)$ where $k+1 \leq i \leq n-1$ for $2 \leq k \leq(n-1)$, and $k \leq i \leq n-1$ for $k=1$.
Suppose v_{k}^{\prime} is 1 layer apart from v_{k}. Then v_{k} is the only permutation of $(1, \ldots, 1, k+$ $1, \ldots, n$) maximizing $c \cdot v$, so $c_{i}<c_{k+1}<\cdots<c_{n}$ for any $1 \leq i \leq k$. Therefore, if $k \geq 2$ and v_{k}^{\prime} is a permutation of $(1, \ldots, 1, k, k+1, \ldots, n)$, then its last $n-k$ coordinates are exactly $(k+1, k+2, \ldots, n)$, so the first k coordinates are one of the k permutations of $(1, \ldots, 1, k)$, where $c_{i}<0$ for $1 \leq i \leq k$ corresponding to values 1 and $c_{i}=0$ for the $1 \leq i \leq k$ corresponding to value k. If $k<n$ and v_{k}^{\prime} is a permutation of $(1, \ldots, 1, k+2, \ldots, n)$ then it is exactly $(1, \ldots, 1, k+2, \ldots, n)$, where $c_{i}<0$ for $1 \leq i \leq k$ and $c_{k+1}=0$.

Thus, for $2 \leq k \leq n-1$, there are $(n-k-1)+k+1=n$ edges with v_{k} as one of the vertices. For $k=1$, there are $(n-k)+0+1=n$ edges with v_{k} as one of the vertices. And for $k=n$, there are $0+k+0=n$ edges with v_{k} as one of the vertices.

Proof of Theorem 2.1. By Proposition 2.4, the graph of P_{n} is an n-regular graph with

$$
V=n!\left(\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)
$$

vertices. Therefore, P_{n} has $\frac{n V}{2}$ edges.

3. FACES OF HIGHER DIMENSIONS

In this section we are going to generalize this approach to understand the nature of faces of higher dimensions. More specifically, we will prove the following theorem.

Theorem 3.1. Let f_{n-s} be the number of $(n-s)$-dimensional faces for s from 0 to n. Then,

$$
f_{n-s}=\sum_{m=0, m \neq 1}^{s}\binom{n}{m} \cdot(s-m)!\cdot S(n-m+1, s-m+1),
$$

where $S(n, k)$ are the Stirling numbers of the second kind.

For each $c \in \mathbb{R}^{n}$, let F_{c} be the set of points $x \in P_{n}$ such that $c \cdot x$ is maximized (for $x \in P_{n}$). Each face of P_{n} is equal to F_{c} for some $c \in \mathbb{R}^{n}$. Also, denote the set of vertices of P_{n} lying in F_{c} by $V\left(F_{c}\right)$.

For each c, define an ordered partition $\left(B_{-}, B_{0}, \ldots, B_{k}\right)$ of $\{1,2, \ldots, n\}$ where B_{-}is the set of indices i such that $c_{i}<0, B_{0}$ is the set of indices i such that $c_{i}=0$, and B_{j} is the set of indices i such that c_{i} is the j-th smallest positive value among the coordinates of c. Let $l_{j}=\left|B_{j}\right|$ for $j=-, 0,1, \ldots, k$.

Lemma 3.2. The face F_{c} is determined by the ordered partition $\left(B, \ldots, B_{k}\right)$ described above. Then each face of P_{n} can be uniquely defined by an ordered partition (B, B_{0}, \cdots, B_{k}) that does not satisfy $l_{-}=0, l_{0}=1$ or $l_{-}=0, l_{0}=0, l_{1}=1$.

Proof. Consider a vertex v of P_{n} that maximizes $c \cdot v$. By the rearrangement inequality and the structure of vertices of P_{n}, it is clear that $v_{i}=1$ for $i \in B_{-},\left(v_{i} \mid i \in B_{0}\right)$ is a permutation of $\left(1,1, \ldots 1, j+1, \ldots, l_{-}+l_{0}\right)$ for some $j \in\left[l_{-}, l_{-}+l_{0}\right],\left(v_{i} \mid i \in B_{i}\right)$ is a permutation of $\left(l_{-}+l_{0}+\cdots+l_{i-1}+1, l_{-}+l_{0}+\cdots+l_{i-1}+2, \ldots, l_{-}+l_{0}+\cdots+l_{i-1}+l_{i}\right)$ for each i from 1 to k.

From this conclusion, if $l_{-}=0$ and $l_{0}=1$, we can change the zero coordinate of c to -1 , and the set $V\left(F_{c}\right)$ will not change. Also, if $l_{-}=0, l_{0}=0$, and $B_{1}=\{i\}$, we can change the value of c_{i} to -1 , and $V\left(F_{c}\right)$ will not change. So we do not consider ($B_{-}, B_{0}, \ldots, B_{k}$) with $l_{-}=0$ and $l_{0}=1$ or $l_{-}=0, l_{0}=0$, and $l_{1}=1$. Other than that, from the conclusion of the previous paragraph, different ordered partitions define different $V\left(F_{c}\right)$'s.

Lemma 3.3. The dimension of F_{c} is equal to $n-k-l_{-}$.

Proof. Let d be the dimension of F_{c}. Then $d=\operatorname{dim}\left(\operatorname{aff}\left(V\left(F_{c}\right)\right)\right)$. If $d=n$ then clearly $F_{c}=P_{n}$ and $c=\mathbf{0}$, so indeed $n-k-l_{-}=n=d$. Now suppose $d<n$. Then $\mathbf{0} \notin \operatorname{aff}\left(V\left(F_{c}\right)\right)$, so $\operatorname{dim}\left(\operatorname{aff}\left(V\left(F_{c}\right) \cup\{\mathbf{0}\}\right)\right)=d+1$.

It is clear that $\operatorname{dim}\left(\operatorname{aff}\left(V\left(F_{c}\right) \cup\{\mathbf{0}\}\right)\right.$ is the dimension of the vector space W spanned by the vectors from $\mathbf{0}$ to points in $V\left(F_{c}\right)$. Take a vector w from $\mathbf{0}$ to some point of $V\left(F_{c}\right)$. For each j from 1 to k, consider $B_{j}=\left\{i_{1}, i_{2}, \ldots, i_{l_{j}}\right\}$. Let V_{j} be the set of $l_{j}-1$ vectors v in \mathbb{R}^{n} which are the permutations of $(1,-1,0,0, \ldots, 0)$ having $v_{i_{k}}=1, v_{i_{k+1}}=-1$, for some $1 \leq k \leq l_{j}-1$. Also, let V_{0} be the set of l_{0} vectors e_{i} in \mathbb{R}^{n} which are the permutations of $(1,0,0,0, \ldots, 0)$ having value 1 at one of the coordinates with index $i \in B_{0}$.
Consider the set $S=\left(\bigcup_{i=0}^{k} V_{i}\right) \cup w$ of

$$
l_{0}+\sum_{i=1}^{k}\left(l_{i}-1\right)+1=\sum_{i=0}^{k} l_{i}-k+1=n-l_{-}-k+1
$$

vectors. We will prove that S spans W.

For any $x \in V\left(F_{c}\right)$, consider the vector $a=x-w-\sum_{i \in B_{0}}\left(x_{i}-w_{i}\right) e_{i}$. Clearly, $a_{i}=0$ for $i \in B_{-} \cup B_{0}$, and for each $0<j \leq k$, if $B_{j}=\left\{i_{1}, i_{2}, \ldots, i_{l_{j}}\right\}$, then $\sum_{m=1}^{l_{j}} a_{i_{m}}=0$. Then $\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{l_{j}}}\right)$ is a linear combination of

$$
((1,-1,0, \ldots, 0),(0,1,-1,0, \ldots, 0), \ldots,(0, \ldots, 0,1,-1))
$$

Therefore, a is a linear combination of vectors in $\bigcup_{i=1}^{k} V_{i}$. Thus, $x=a+w+\sum_{i \in B_{0}}\left(x_{i}-w_{i}\right) e_{i}$ is a linear combination of vectors in S, so S spans W.

Also, S is linearly independent. If it is not, then there is a linear combination β of vectors in S such that $\beta=b w+\sum_{v \in S \backslash\{w\}} b_{v} v=0$ and not all of the b_{v} and b are zero. If $l_{-}>0$, then for some $i \in B_{-}, 0=\beta_{i}=b w_{i}$, so $b=0$. If $k>0$, then $\left|B_{1}\right|>0$, so

$$
\begin{aligned}
0 & =\sum_{q \in B_{1}} \beta_{q} \\
& =\sum_{q \in B_{1}}\left(b w_{q}+\sum_{v \in S \backslash\{w\}} b_{v} v_{q}\right) \\
& =b \sum_{q \in B_{1}} w_{q}+\sum_{q \in B_{1}} \sum_{v \in S \backslash\{w\}} b_{v} v_{q} \\
& =b \sum_{q \in B_{1}} w_{q}+\sum_{v \in S \backslash\{w\}} b_{v} \sum_{q \in B_{1}} v_{q} \\
& =b \sum_{q \in B_{1}} w_{q}+\sum_{v \in S \backslash\{w\}} b_{v} \cdot 0 \\
& =b \sum_{q \in B_{1}} w_{q} .
\end{aligned}
$$

Therefore, $b=0$. Since $d<n$, we have $l_{0}<n$, so either $l_{-}>0$ or $k>0$. In both cases $b=0$. But then $\left(b_{1}, \ldots, b_{n-l_{-}-k}\right) \neq 0$, so $\bigcup_{i=0}^{k} V_{i}$ is linearly dependent, which is clearly not true.

Thus, S spans W and is linearly independent, which means it is a basis of W. Thus $d+1=\operatorname{dim}(W)=|S|=n-l_{-}-k+1$, so $d=n-k-l_{-}$.

Proof of Theorem [3.1. To find the number f_{n-s} of $(n-s)$-dimensional faces we need to find the number of different ordered partitions $\left(B_{-}, B_{0}, \ldots, B_{k}\right)$ of $\{1, \ldots, n\}$ such that $l_{i}>0$ for $i \geq 1$ and $n-s=n-k-l_{-}$, i.e., $s=k+l_{-}$, not satisfying $l_{-}=0, l_{0}=1$ or $l_{-}=0, l_{0}=0, l_{1}=1$. For convenience, we will denote l_{-}by m in further computations. We have $s=k+m$, so m takes values from 0 to s.

For each m from 0 to s, we first choose m elements for B_{-}. Then, if $l_{0}=0$, we partition the remaining $n-m$ elements into $k=s-m$ nonempty ordered groups. If $l_{0} \geq 1$, we partition the remaining $n-m$ elements into $k+1=s-m+1$ nonempty ordered groups. Thus we
have the corresponding Stirling numbers of the second kind multiplied by the number of permutations of the groups because those are ordered. Note that since we do not consider c with $m=l_{-}=0$ and $l_{0}=1$ or $m=l_{-}=0, l_{0}=0$, and $l_{1}=1$, we need to subtract the number of such partitions. So we subtract $n \cdot k!\cdot S(n-1, k)=\binom{n}{1} \cdot s!\cdot S(n-1, s)$ and $n \cdot(k-1)!\cdot S(n-1, k-1)=\binom{n}{1} \cdot(s-1)!\cdot S(n-1, s-1)$. Therefore,

$$
\begin{aligned}
f_{n-s} & =\sum_{m=0, m \neq 1}^{s}\binom{n}{m} \cdot((s-m)!\cdot S(n-m, s-m)+(s-m+1)!\cdot S(n-m, s-m+1)) \\
& =\sum_{m=0, m \neq 1}^{s}\binom{n}{m} \cdot(s-m)!\cdot S(n-m+1, s-m+1) .
\end{aligned}
$$

Using this formula to find the number of edges of P_{n}, we take $n-s=1$, so $s=n-1$. Then since $S(a, a-1)=\frac{a(a-1)}{2}$ for any positive integer a,

$$
\begin{aligned}
f_{1} & =\sum_{m=0, m \neq 1}^{n-1}\binom{n}{m} \cdot(n-m-1)!\cdot S(n-m+1, n-m) \\
& =\sum_{m=0, m \neq 1}^{n-1}\binom{n}{m} \cdot(n-m-1)!\cdot \frac{(n-m+1)(n-m)}{2} \\
& =\sum_{m=0, m \neq 1}^{n-1} \frac{n!\cdot(n-m+1)}{2 m!} \\
& =\sum_{m=1}^{n-1} \frac{n!\cdot n}{2 m!}-\sum_{m=2}^{n-1} \frac{n!}{2(m-1)!}+\sum_{m=1}^{n-1} \frac{n!}{2 m!} \\
& =\frac{n}{2}\left(\sum_{m=1}^{n-1} \frac{n!}{m!}\right)-\sum_{m=1}^{n-2} \frac{n!}{2 m!}+\sum_{m=1}^{n-1} \frac{n!}{2 m!} \\
& =\frac{n}{2}(V-1)+\frac{n!}{2(n-1)!} \\
& =\frac{n V}{2},
\end{aligned}
$$

where V is the number of vertices of P_{n} and is equal to $n!\left(\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)$. This again proves Theorem 2.1.

4. Volume

To find the volume of P_{n}, we split the polytope into n-dimensional pyramids with facets of P_{n} not containing $I=(1,1, \ldots, 1)$ as bases and point I as vertex. There are $2^{n}-n-1$
such pyramids. Now we will derive a recursive formula for the volume of P_{n}, as a sum of volumes of these pyramids.

Theorem 4.1. Define a sequence $\left\{V_{n}\right\}_{n \geq 0}$ by $V_{0}=1$ and $V_{n}=\operatorname{Vol}\left(P_{n}\right)$ for all positive integers n. Then, $\left\{V_{n}\right\}_{n \geq 0}$ satisfies the following recurrence relation,

$$
V_{n}=\frac{1}{n} \sum_{k=0}^{n-1}\binom{n}{k} \frac{(n-k)^{n-k-1}(n+k-1)}{2} V_{k},
$$

for all $n \geq 2$.
In the proof of this theorem we will use the following "decomposition lemma".
Proposition 4.2 ([3, Proposition 2]). Let K_{1}, \ldots, K_{n} be some convex bodies of \mathbb{R}^{n} and suppose that K_{n-m+1}, \ldots, K_{n} are contained in some m-dimensional affine subspace U of \mathbb{R}^{n}. Let $M V_{U}$ denote the mixed volume with respect to the m-dimensional volume measure on U, and let $M V_{U^{\perp}}$ be defined similarly with respect to the orthogonal complement U^{\perp} of U. Then the mixed volume of K_{1}, \ldots, K_{n}

$$
\begin{aligned}
& \operatorname{MV}\left(K_{1}, \ldots, K_{n-m}, K_{n-m+1}, \ldots, K_{n}\right)= \\
& \quad \frac{1}{\binom{n}{m}} M V_{U \perp}\left(K_{1}^{\prime}, \ldots, K_{n-m}^{\prime}\right) M V_{U}\left(K_{n-m+1}, \ldots, K_{n}\right),
\end{aligned}
$$

where $K_{1}^{\prime}, \ldots, K_{n-m}^{\prime}$ denote the orthogonal projections of K_{1}, \ldots, K_{n-m} onto U^{\perp}, respectively.

Proof of Theorem 4.1. Each pyramid has a base which is a facet F with points of P_{n} satisfying the equation

$$
x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}}=(n-k+1)+(n-k+2)+\cdots+(n-1)+n
$$

for some $k \in\{1,2, \ldots, n-2, n\}$ and distinct $i_{1}<\cdots<i_{k}$.
Let $\left\{j_{1}, j_{2}, \ldots, j_{n-k}\right\}=\{1,2, \ldots, n\}-\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Let P_{n-k}^{\prime} be the polytope containing all points x^{\prime} such that $x_{p}^{\prime}=0$ for all $p \in\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and for some $x \in F, x_{p}^{\prime}=x_{p}$ for all $p \in\left\{j_{1}, j_{2}, \ldots, j_{n-k}\right\}$. Then P_{n-k}^{\prime} is an $(n-k)$-dimensional polytope with the following defining inequalities:

$$
\begin{aligned}
& 1 \leq x_{j_{p}}^{\prime} \leq n-k, 1 \leq p \leq n-k \\
& x_{j_{p}}^{\prime}+x_{j_{q}}^{\prime} \leq(n-k-1)+(n-k), 1 \leq p<q \leq n-k \\
& x_{j_{p}}^{\prime}+x_{j_{q}}^{\prime}+x_{j_{r}}^{\prime} \leq(n-k-2)+(n-k-1)+(n-k), 1 \leq p<q<r \leq n-k \\
& \vdots \\
& x_{j_{p_{1}}}^{\prime}+x_{j_{p_{2}}}^{\prime}+\cdots+x_{j_{p_{n-k-2}}}^{\prime} \leq 3+4+\cdots+(n-k), 1 \leq p_{1}<p_{2}<\cdots<p_{n-k-2} \leq n-k \\
& x_{j_{p_{1}}}^{\prime}+x_{j_{p_{2}}}^{\prime}+\cdots+x_{j_{p_{n-k}}}^{\prime} \leq 1+2+3+4+\cdots+(n-k) .
\end{aligned}
$$

This means P_{n-k}^{\prime} is congruent to P_{n-k}, so $\operatorname{Vol}_{n-k}\left(P_{n-k}^{\prime}\right)=\operatorname{Vol}_{n-k}\left(P_{n-k}\right)=V_{n-k}$.
Let Q_{k} be the polytope containing all points x^{\prime} such that for all $p \in\left\{j_{1}, j_{2}, \ldots, j_{n-k}\right\}$, we have $x_{p}^{\prime}=0$, and for some $x \in F$, for all $p \in\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$, we have $x_{p}^{\prime}=x_{p}$. Then the coordinate values $\left(x_{i_{1}}^{\prime}, x_{i_{2}}^{\prime}, \ldots, x_{i_{k}}^{\prime}\right)$ of vetrices of Q_{k} are the permutations of $(n-k+1, n-k+2, \ldots, n)$, meaning Q_{n} is a $(k-1)$-dimensional polytope equivalent to the permutohedron of order k with $(k-1)$-dimensional volume $k^{k-2} \sqrt{k}$.

Thus, F is a Minkowski sum of two polytopes P_{n-k}^{\prime} and Q_{k} which lie in two orthogonal subspaces of \mathbb{R}^{n}. Therefore, by Proposition 4.2, the $(n-1)$-dimensional volume of F is equal to

$$
\sum_{p_{1}, \ldots, p_{n}=1}^{2} M V\left(K_{p_{1}}, K_{p_{2}}, \ldots, K_{p_{n}}\right)=V_{n-k} \cdot k^{k-2} \sqrt{k}
$$

where $K_{1}=P_{n-k}^{\prime}$ and $K_{2}=Q_{k}$. Then the volume of the pyramid with F as a base and I as a vertex is equal to

$$
\frac{1}{n} h_{k} \operatorname{Vol}(F)=\frac{1}{n} h_{k} V_{n-k} \cdot k^{k-2} \sqrt{k}
$$

where h_{k} is the distance from point I to the face F, which is equal to

$$
\frac{|1+1+\cdots+1-((n-k+1)+(n-k+2)+\cdots+(n-1)+n)|}{\sqrt{1+1+\cdots+1}}=\frac{k(2 n-k-1)}{2 \sqrt{k}}
$$

Thus,

$$
\operatorname{Vol}(\operatorname{Pyr}(I, F))=\frac{1}{n} \cdot \frac{k(2 n-k-1)}{2 \sqrt{k}} V_{n-k} \cdot k^{k-2} \sqrt{k}=\frac{1}{n} \cdot \frac{k(2 n-k-1)}{2} k^{k-2} V_{n-k}
$$

Since $V_{0}=1$ and $V_{1}=0$, we get for $n \geq 2$,

$$
\begin{aligned}
V_{n} & =\frac{1}{n}\left(\sum_{k=1}^{n-2}\binom{n}{k} \frac{k(2 n-k-1)}{2} k^{k-2} V_{n-k}\right)+\frac{1}{n} \cdot \frac{n(n-1)}{2} n^{n-2} \\
& =\frac{1}{n}\left(\sum_{k=2}^{n-1}\binom{n}{n-k} \frac{(n-k)(n+k-1)}{2}(n-k)^{n-k-2} V_{k}\right)+\frac{1}{n} \cdot \frac{n^{n-1}(n-1)}{2} \\
& =\frac{1}{n} \sum_{k=0}^{n-1}\binom{n}{k} \frac{(n-k)^{n-k-1}(n+k-1)}{2} V_{k} .
\end{aligned}
$$

For $n=1,2, \ldots, 8$ this formula gives the volume values $0, \frac{1}{2}, 4, \frac{159}{4}, 492, \frac{58835}{8}, 129237, \frac{41822865}{16}$.
Proposition 4.3. Let $f(x)=\sum_{n \geq 0} \frac{V_{n}}{n!} x^{n}$ be the exponential generating function of $\left\{V_{n}\right\}_{n \geq 0}$. Let $g(x)=\sum_{n \geq 1} \frac{n^{n-1}}{n!} x^{n}$ be the exponential generating function of $\left\{n^{n-1}\right\}_{n \geq 1}$. Then,

$$
f(x)=e^{\int \frac{x\left(g^{\prime}(x)\right)^{2}}{2}}
$$

Proof. It is known that $g(x)=x e^{g(x)}$, so

$$
\begin{equation*}
g^{\prime}(x)=e^{g(x)}+x e^{g(x)}=\frac{g(x)}{x}+g(x) g^{\prime}(x) . \tag{}
\end{equation*}
$$

From Theorem 4.1,

$$
\begin{aligned}
n \cdot \frac{V_{n}}{n!} & =\sum_{k=0}^{n-1} \frac{(n-k)^{n-k-1}(n+k-1)}{2(n-k)!} \cdot \frac{V_{k}}{k!} \\
& =\sum_{k=0}^{n-1} \frac{(n-k)^{n-k-1}(n-k+2 k-1)}{2(n-k)!} \cdot \frac{V_{k}}{k!} \\
& =\sum_{k=0}^{n-1} \frac{1}{2} \cdot \frac{(n-k)^{n-k}}{(n-k)!} \cdot \frac{V_{k}}{k!}+\sum_{k=0}^{n-1} \frac{(n-k)^{n-k-1} k}{(n-k)!} \cdot \frac{V_{k}}{k!}-\sum_{k=0}^{n-1} \frac{1}{2} \cdot \frac{(n-k)^{n-k-1}}{(n-k)!} \cdot \frac{V_{k}}{k!} .
\end{aligned}
$$

Therefore,

$$
f^{\prime}(x)=\frac{1}{2} g^{\prime}(x) f(x)+g(x) f^{\prime}(x)-\frac{1}{2 x} g(x) f(x) .
$$

Then,

$$
f^{\prime}(x)(1-g(x))=\frac{1}{2 x}\left(x g^{\prime}(x)-g(x)\right) f(x) \underset{\text { by }}{=}=\frac{1}{2 x} x g(x) g^{\prime}(x) f(x)=\frac{1}{2} g(x) g^{\prime}(x) f(x),
$$

so

$$
f^{\prime}(x)=\frac{g(x) g^{\prime}(x) f(x)}{2(1-g(x))} \underset{\text { by }}{=} \frac{g(x) g^{\prime}(x) f(x)}{2\left(\frac{g(x)}{x g^{\prime}(x)}\right)}=\frac{x\left(g^{\prime}(x)\right)^{2}}{2} f(x) .
$$

Thus, $f(x)=c e^{\int \frac{x\left(g^{\prime}(x)\right)^{2}}{2}}$. It is clear that $c=1$, so $f(x)=e^{\int \frac{x\left(g^{\prime}(x)\right)^{2}}{2}}$.

5. Lattice Points

In this section we are going to find the number of integer points in P_{n}.
Proposition 5.1. Let $P_{n, S}$ be the set of points x in P_{n} satisfying $x_{1}+\cdots+x_{n}=S$. For each integer S from $n+1$ to $\frac{n(n-1)}{2}$ there is a unique pair of positive integers (r, k) such that $2 \leq r \leq k+1$,

$$
\underbrace{1+\cdots+1}_{k \text { ones }}+r+(k+2)+\cdots+n=S,
$$

and the set of vertices of $P_{n, S}$ is the set of permutations of $(1, \ldots, 1, r, k+2, \ldots, n)$. For the case $S=n$, the set of vertices of $P_{n, n}$ is just one vertex $(1, \ldots, 1)$.

Proof. It is clear that if $S=n$, then the only point x in $P_{n, S}$ satisfies $x_{1}=\cdots=x_{n}=1$. For this case we can say $k=n$ and r is unnecessary.

Since $1+\cdots+1<1+\cdots+1+n<\cdots<1+2+\cdots+n$, for each S from $n+1$ to $\frac{n(n-1)}{2}$ there is a unique $k \leq(n-1)$ such that

$$
1+\cdots+1+(k+2)+\cdots+n<S \leq 1+\cdots+1+(k+1)+\cdots+n .
$$

Then $0<S-(1+\cdots+1+(k+2)+\cdots+n) \leq k$, so take

$$
r=1+S-(1+\cdots+1+(k+2)+\cdots+n)
$$

for which $1<r \leq k+1$. Then indeed $1+\cdots+1+r+(k+2)+\cdots+n=S$.
Suppose there is another $\left(r^{\prime}, k^{\prime}\right)$ such that $1+\cdots+1+r^{\prime}+\left(k^{\prime}+2\right)+\cdots+n=S$. If $k<k^{\prime}$, then

$$
\begin{gathered}
1+\cdots+1+r^{\prime}+\left(k^{\prime}+2\right)+\cdots+n \leq \\
1+\cdots+1+\left(k^{\prime}+1\right)+\left(k^{\prime}+2\right)+\cdots+n \leq \\
1+\cdots+1+(k+2)+\cdots+n< \\
1+\cdots+1+r+(k+2)+\cdots+n,
\end{gathered}
$$

contradiction. Thus, $k \geq k^{\prime}$. Similarly, $k^{\prime} \geq k$, so $k=k^{\prime}$, from where it is clear that $r=r^{\prime}$.
Now we will prove that set of vertices of $P_{n, S}$ is the set of permutations of $(1, \ldots, 1, r, k+$ $2, \ldots, n)$. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be a vertex of $P_{n, S}$. Since $P_{n, S}$ is invariant under coordinate permutation, we may assume $a_{1} \leq \cdots \leq a_{n}$.

If there is no $1 \leq k \leq n$ such that $a_{k}<k$, then clearly $a_{i}=i$ for all $1 \leq i \leq n$. In this case $k=1, r=2$, and a is indeed a permutation of $(1, \ldots, 1, r, k+2, \ldots, n)=(1,2, \ldots, n)$. Otherwise, take the greatest $1 \leq k \leq n$ such that $a_{k}<k$. Then $a=\left(a_{1}, \ldots, a_{k}, k+1, \ldots, n\right)$.

Case 1. $a_{k}=a_{k-1}$.
Suppose $c=a_{m}=\cdots=a_{k} \leq k-1$ and $a_{m-1} \neq c$. Then

$$
c=\frac{a_{m}+\cdots+a_{k}}{k-m+1} \leq \frac{m+\cdots+k}{k-m+1}=\frac{m+k}{2} .
$$

Suppose $c>1$. Then there exists $\epsilon>0$ such that $\epsilon \leq \frac{j-m}{2}(k-j+1)$ for each j from $m+1$ to k. Consider $x=\left(a_{1}, \ldots, a_{m-1}, a_{m}-\epsilon, a_{m+1}, \ldots, a_{k-1}, a_{k}+\epsilon, \ldots, a_{n}\right)$. For any $m+1 \leq j \leq k$,

$$
\begin{aligned}
a_{j}+\cdots+a_{k}+\epsilon & =c(k-j+1)+\epsilon \\
& \leq \frac{m+k}{2}(k-j+1)+\frac{j-m}{2}(k-j+1) \\
& =\frac{j+k}{2}(k-j+1) \\
& =j+\cdots+k .
\end{aligned}
$$

This means x satisfies all the defining inequalities of P_{n}, so $x \in P_{n, S}$. Therefore, $x^{\prime}=$ $\left(a_{1}, \ldots, a_{m-1}, a_{m}+\epsilon, a_{m+1}, \ldots, a_{k-1}, a_{k}-\epsilon, \ldots, a_{n}\right)$ is also in $P_{n, S}$ since it is just a permutation of x. But then $a=\frac{1}{2} x+\frac{1}{2} x^{\prime}$, so a is not a vertex of $P_{n, S}$ if $c>1$.
Therefore, $c=1$, and since $1 \leq a_{1} \leq \cdots \leq a_{k}=c=1$, we have $a_{1}=\cdots=a_{k}=1$ and $S=1+\cdots+1+(k+1)+\cdots+n$, so $(r, k)=(k+1, k)$ and a is indeed a permutation of $(1, \ldots, 1, r, k+2, \ldots, n)$.

Case 2. $a_{k}>a_{k-1}$.
Then, since $a_{k-1} \geq 1$, we have $a_{k} \geq 2$. Suppose $c=a_{m}=\cdots=a_{k-1}<a_{k} \leq k-1$ and $a_{m-1} \neq c$. Then

$$
\begin{aligned}
c & =\frac{a_{m}+\cdots+a_{k-1}}{k-m} \\
& =\frac{a_{m}+\cdots+a_{k-1}+a_{k}-a_{k}}{k-m} \\
& \leq \frac{m+\cdots+k-a_{k}}{k-m} \\
& =\frac{\frac{1}{2}(m+k)(k-m+1)-a_{k}}{k-m} .
\end{aligned}
$$

Suppose $c>1$. For any j from $m+1$ to k,

$$
\begin{aligned}
(j+\cdots+k)- & \left(a_{j}+\cdots+a_{k}\right)=\frac{1}{2}(j+k)(k-j+1)-c(k-j)-a_{k} \\
& \geq \frac{1}{2}(j+k)(k-j+1)-(k-j) \frac{\frac{1}{2}(m+k)(k-m+1)-a_{k}}{k-m}-a_{k} \\
& =\frac{1}{2}(j+k)(k-j+1)-(k-j) \frac{\frac{1}{2}(m+k)(k-m+1)}{k-m}+a_{k}\left(\frac{m-j}{k-m}\right) \\
& >\frac{1}{2}(j+k)(k-j+1)-(k-j) \frac{\frac{1}{2}(m+k)(k-m+1)}{k-m}+\frac{k(m-j)}{k-m} \\
& =\frac{(k-j)(j-m)}{2} \geq 0 .
\end{aligned}
$$

Then there exists $\epsilon>0$ such that $\epsilon<(j+\cdots+k)-\left(a_{j}+\cdots+a_{k}\right)$ for each j from $m+1$ to k.

Consider $x=\left(a_{1}, \ldots, a_{m-1}, a_{m}-\epsilon, a_{m+1}, \ldots, a_{k-1}, a_{k}+\epsilon, \ldots, a_{n}\right)$. For any $m+1 \leq j \leq k$, $a_{j}+\cdots+a_{k}+\epsilon<j+\cdots+k$. This means x satisfies all the defining inequalities of P_{n}, so $x \in P_{n, S}$. Also, $x^{\prime}=\left(a_{1}, \ldots, a_{m-1}, a_{m}+\epsilon, a_{m+1}, \ldots, a_{k-1}, a_{k}-\epsilon, \ldots, a_{n}\right)$ is also in $P_{n, S}$. But then $a=\frac{1}{2} x+\frac{1}{2} x^{\prime}$, so a is not a vertex of $P_{n, S}$ if $c>1$.
Therefore, $c=1$ and since $1 \leq a_{1} \leq \cdots \leq a_{k-1}=c=1$, we have $a_{1}=\cdots=a_{k-1}=1$. Then $S=1+\cdots+1+a_{k}+(k+1)+\cdots+k$, where $2 \leq r=a_{k}<k$, so a is indeed a permutation of $(1, \ldots, 1, r, k+1, \ldots, n)$.

Thus, we have that $P_{n, S}$ is a permutohedron with permutations of $(1, \ldots, 1, r, k+2, \ldots, n)$ as its vertices. In the case $S=n, P_{n, S}$ is a permutohedron consisting of one point $(1, \ldots, 1)$. In other words, $P_{n, S}$ is the convex hull of all permutations of vector $\left(x_{1}, \ldots, x_{n}\right)$, where

$$
\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}(1, \ldots, 1, r, k+2, \ldots, n), & \text { if } S>n \\ (1, \ldots, 1), & \text { if } S=n\end{cases}
$$

Let $N(P)$ denote the number of integer points in a polytope P. Then,

$$
N\left(P_{n}\right)=\sum_{S=n}^{\frac{n(n-1)}{2}} N\left(P_{n, S}\right)
$$

Let From [2, Section 4], $P_{n, S}$ is a generalized permutohedron $P_{n-1}(\mathbf{Y})$ with $Y_{I}=y_{|I|}$ for any $I \subset[n]$ and

$$
\begin{aligned}
y_{1} & =x_{1} \\
y_{2} & =x_{2}-x_{1} \\
y_{3} & =x_{3}-2 x_{2}+x_{1} \\
& \vdots \\
y_{n} & =\binom{n-1}{0} x_{n}-\binom{n-1}{1} x_{n-1}+\cdots \pm\binom{ n-1}{n-1} x_{1} .
\end{aligned}
$$

So by [2, Theorem 4.2],

$$
N\left(P_{n, S}\right)=\frac{1}{(n-1)!} \sum_{\left(S_{1}, \ldots, S_{n-1}\right)}\left\{Y_{S_{1}} \cdots Y_{S_{n-1}}\right\}
$$

where the summation is over ordered collections of subsets $S_{1}, \ldots, S_{n-1} \subset[n]$ such that for any distinct i_{1}, \ldots, i_{k}, we have $\left|S_{i_{1}} \cup \cdots \cup S_{i_{k}}\right| \geq k+1$, and

$$
\left\{\prod_{I} Y_{I}^{a_{I}}\right\}:=\left(Y_{[n]}+1\right)^{\left\{a_{[n]}\right\}} \prod_{I \neq[n]} Y_{I}^{\left\{a_{I}\right\}}, \text { where } Y^{\{a\}}=Y(Y+1) \ldots(Y+a-1)
$$

References

[1] Richard Stanley, Problem 12191, PROBLEMS AND SOLUTIONS, The American Mathematical Monthly, 127:6 (2020), 563-571, DOI: 10.1080/00029890.2020.1747921
[2] Alexander Postnikov, Permutohedra, associahedra, and beyond, http://math.mit.edu/~apost/papers/ permutohedron.pdf
[3] Martin Dyer and Peter Gritzmann and Alexander Hufnagel, On the complexity of computing mixed volumes, SIAM J. Comput. 27 (1998), 356-400 (electronic).

