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1. Introduction

Let Pn be the convex hull in Rn of all parking functions of length n. The problem proposed
by Stanley in [1] asks to determine

(a) the number of vertices of Pn,

(b) the number of (n− 1)-dimensional faces, i.e. facets, of Pn,

(c) the number of integer points in Pn, i.e., the number of elements of Zn ∩ Pn,

(d) the n-dimensional volume of Pn.

In a private communication with the author, Stanley showed the proof that the vertices of
Pn are the permutations of

(1, . . . , 1︸ ︷︷ ︸
k ones

, k + 1, k + 2, . . . , n),

for 1 ≤ k ≤ n. This is proven in two parts. First, any parking function α = (a1, . . . , an)
that has a term ai > 1 such that (a1, . . . , ai−1, ai+1, ai+1, . . . , an) is also a parking function,
is a convex combination of two other parking functions. Second, if α = (1, . . . , 1, k+ 1, k+
2, . . . , n) is a convex combination of β, γ ∈ Pn, then by the properties of parking functions,
β = γ = α, meaning α is a vertex of Pn.

From this observation, the number of vertices of Pn is

n!

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
.

Stanley also showed that the defining inequalities of Pn are,

1 ≤xi ≤ n, ≤ i ≤ n
xi + xj ≤ (n− 1) + n, i < j

xi + xj + xk ≤ (n− 2) + (n− 1) + n, i < j < k
...

xi1 + xi2 + · · ·+ xin−2 ≤ 3 + 4 + · · ·+ n, i1 < i2 < · · · < in−2

x1 + x2 + · · ·+ xn ≤ 1 + 2 + · · ·+ n.

Thus, the number of facets is the number of these inequalities, which is equal to

2n − 1.

Organization of the paper. In Section 2, we find the number of edges of Pn by under-
standing which pairs of vertices create an edge and using the formula obtained by Stanley
for the number of vertices of Pn. In Section 3, we consider the general case of d-dimensional
faces of Pn, determine their structure, and derive the formula for their number by using
Stirling numbers of the second kind. In Section 4, we prove that the sequence {Vn} of vol-
umes of Pn satisfies a nice recurrence relation and find the exponential generating function
of this sequence. Lastly, in Section 5, we show that the set of lattice points of Pn can be
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divided into sets of lattice points of several permutohedrons, which have a formula given
by Postnikov in [2].

Acknowledgements. I would like to thank Prof. David Jerison, Prof. Ankur Moitra,
and Dr. Slava Gerovitch for organizing the UROP+ program, and the Paul E. Gray (1954)
UROP Fund for generously supporting my research. Also, thanks to Prof. Richard Stanley
for suggesting this problem and for his guidance along the way. Huge thanks to Danielle
Wang for her great mentoring and for helping me understand every unclear detail during
this research. Finally, I would like to give thanks to Daniyar Aubekerov who helped me
with coding and provided emotional support throughout the past three months.

2. Edges

Theorem 2.1. The number of edges of Pn is equal to

n · n!

2

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
.

Definition 2.2. We know that parking functions which are vertices of Pn are permutations
of (1, 1, . . . , 1, k + 1, k + 2, . . . , n) (1 ≤ k ≤ n). For every such vertex we define its layer to
be equal to n− k. We denote the layer of x by L(x).

Proposition 2.3. If v1 and v2 are two vertices of Pn such that v1v2 is an edge, then
|L(v1) − L(v2)| ≤ 1, meaning v1 and v2 are either from neighboring layers or from the
same layer.

Proof. Let c ·x be the dot product c1x1 + · · ·+ cnxn of vectors c, x ∈ Rn. If v1v2 is an edge,
then there is c such that c · v1 = c · v2 > c · v for any vertex v of Pn distinct from v1 and
v2. Since Pn is invariant under coordinate permutation, without loss of generality we may
assume c1 ≤ · · · ≤ cn.

Suppose v1 and v2 are t ≥ 2 layers apart from each other, so let v1 be a permutation of
(1, 1, . . . , 1, k, k+1, . . . , n) and v2 be a permutation of (1, 1, . . . , 1, k+t, k+t+1, . . . , n), where
1 ≤ k < k + 2 ≤ k + t ≤ n. Since v1 and v2 are unique permutations of (1, 1, . . . , 1, k, k +
1, . . . , n) and (1, 1, . . . , 1, k, k+1, . . . , n), respectively, that maximize c ·v, by the rearrange-
ment inequality, v1 = (1, 1, . . . , 1, k, k + 1, . . . , n), v2 = (1, 1, . . . , 1, k + t, k + t + 1, . . . , n),
and ck−1 < ck < · · · < cn. If ck+t−1 ≥ 0, then for v3 = (1, 1, . . . , 1, k+t−1, k+t . . . , n) ∈ Pn

which is distinct from v1 and v2, we have c·v3 ≥ c·v2, a contradiction. Otherwise, if ck+t−1 <
0, we have ck < · · · < ck+t−1 < 0, so c·v1−c·v2 = ck(k−1)+ck+1k+· · ·+ck+t−1(k+t−2) < 0,
meaning c · v1 < c · v2, a contradiction. Thus, v1 and v2 are at most one layer apart from
each other. �

Proposition 2.4. For each vertex v of Pn, there are exactly n edges of Pn with v as one
of the vertices.
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Proof. Suppose v = vk is on layer n−k. Since Pn is invariant under coordinate permutation,
without loss of generality we may assume vk = (1, . . . , 1, k+ 1, . . . , n). Let vkv

′
k be an edge

of Pn, then there is c ∈ Rn such that c · vk = c · v′k > c · v for any vertex v of Pn distinct
from vk and v′k. By the rearrangement inequality, ci ≤ ck+1 ≤ · · · ≤ cn for any 1 ≤ i ≤ k.

If v′k is on the same layer as vk, then v′k is a permutation of (1, . . . , 1, k + 1, . . . , n). If
ck+1 ≤ 0, then changing the (k + 1)-st coordinate of vk from k + 1 to 1 will give another
vertex v of Pn for which c ·v ≥ c ·vk, contradiction. Thus 0 < ck+1 ≤ · · · ≤ cn. If 2 ≤ k ≤ n
and ci ≥ 0 for some 1 ≤ i ≤ k, then changing the i-th coordinate of vk from 1 to k will give
another vertex v of Pn for which c · v ≥ c · vk, a contradiction. Thus, ci < 0 for 1 ≤ i ≤ k
if k ≥ 2.

By the rearrangement inequality, for k = 1, c1 < · · · < cj = cj+1 < · · · < cn, where
1 ≤ j ≤ n−1, and for k ≥ 2, 0 < ck+1 < · · · < cj = cj+1 < · · · < cn where k+1 ≤ j ≤ n−1.
Thus, vk and v′k differ from each other by exactly one swap of two neighboring coordinates
(i, i+ 1) where k + 1 ≤ i ≤ n− 1 for 2 ≤ k ≤ (n− 1), and k ≤ i ≤ n− 1 for k = 1.

Suppose v′k is 1 layer apart from vk. Then vk is the only permutation of (1, . . . , 1, k +
1, . . . , n) maximizing c · v, so ci < ck+1 < · · · < cn for any 1 ≤ i ≤ k. Therefore, if k ≥ 2
and v′k is a permutation of (1, . . . , 1, k, k+1, . . . , n), then its last n−k coordinates are exactly
(k+1, k+2, . . . , n), so the first k coordinates are one of the k permutations of (1, . . . , 1, k),
where ci < 0 for 1 ≤ i ≤ k corresponding to values 1 and ci = 0 for the 1 ≤ i ≤ k
corresponding to value k. If k < n and v′k is a permutation of (1, . . . , 1, k + 2, . . . , n) then
it is exactly (1, . . . , 1, k + 2, . . . , n), where ci < 0 for 1 ≤ i ≤ k and ck+1 = 0.

Thus, for 2 ≤ k ≤ n − 1, there are (n − k − 1) + k + 1 = n edges with vk as one of the
vertices. For k = 1, there are (n− k) + 0 + 1 = n edges with vk as one of the vertices. And
for k = n, there are 0 + k + 0 = n edges with vk as one of the vertices. �

Proof of Theorem 2.1. By Proposition 2.4, the graph of Pn is an n-regular graph with

V = n!

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
vertices. Therefore, Pn has nV

2 edges. �

3. Faces of higher dimensions

In this section we are going to generalize this approach to understand the nature of faces
of higher dimensions. More specifically, we will prove the following theorem.

Theorem 3.1. Let fn−s be the number of (n − s)-dimensional faces for s from 0 to n.
Then,

fn−s =

s∑
m=0,m 6=1

(
n

m

)
· (s−m)! · S(n−m+ 1, s−m+ 1),

where S(n, k) are the Stirling numbers of the second kind.
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For each c ∈ Rn, let Fc be the set of points x ∈ Pn such that c ·x is maximized (for x ∈ Pn).
Each face of Pn is equal to Fc for some c ∈ Rn. Also, denote the set of vertices of Pn lying
in Fc by V (Fc).

For each c, define an ordered partition (B−, B0, . . . , Bk) of {1, 2, . . . , n} where B− is the
set of indices i such that ci < 0, B0 is the set of indices i such that ci = 0, and Bj is the
set of indices i such that ci is the j-th smallest positive value among the coordinates of c.
Let lj = |Bj | for j = −, 0, 1, . . . , k.

Lemma 3.2. The face Fc is determined by the ordered partition (B, . . . , Bk) described
above. Then each face of Pn can be uniquely defined by an ordered partition (B,B0, · · · , Bk)
that does not satisfy l− = 0, l0 = 1 or l− = 0, l0 = 0, l1 = 1.

Proof. Consider a vertex v of Pn that maximizes c ·v. By the rearrangement inequality and
the structure of vertices of Pn, it is clear that vi = 1 for i ∈ B−, (vi|i ∈ B0) is a permutation
of (1, 1, . . . 1, j + 1, . . . , l− + l0) for some j ∈ [l−, l− + l0], (vi|i ∈ Bi) is a permutation of
(l− + l0 + · · ·+ li−1 + 1, l− + l0 + · · ·+ li−1 + 2, . . . , l− + l0 + · · ·+ li−1 + li) for each i from
1 to k.

From this conclusion, if l− = 0 and l0 = 1, we can change the zero coordinate of c to −1,
and the set V (Fc) will not change. Also, if l− = 0, l0 = 0, and B1 = {i}, we can change
the value of ci to −1, and V (Fc) will not change. So we do not consider (B−, B0, . . . , Bk)
with l− = 0 and l0 = 1 or l− = 0, l0 = 0, and l1 = 1. Other than that, from the conclusion
of the previous paragraph, different ordered partitions define different V (Fc)’s. �

Lemma 3.3. The dimension of Fc is equal to n− k − l−.

Proof. Let d be the dimension of Fc. Then d = dim(aff(V (Fc))). If d = n then clearly
Fc = Pn and c = 0, so indeed n−k−l− = n = d. Now suppose d < n. Then 0 /∈ aff(V (Fc)),
so dim(aff(V (Fc) ∪ {0})) = d+ 1.

It is clear that dim(aff(V (Fc) ∪ {0}) is the dimension of the vector space W spanned by
the vectors from 0 to points in V (Fc). Take a vector w from 0 to some point of V (Fc). For
each j from 1 to k, consider Bj = {i1, i2, . . . , ilj}. Let Vj be the set of lj − 1 vectors v in
Rn which are the permutations of (1,−1, 0, 0, . . . , 0) having vik = 1, vik+1

= −1, for some
1 ≤ k ≤ lj − 1. Also, let V0 be the set of l0 vectors ei in Rn which are the permutations of
(1, 0, 0, 0, . . . , 0) having value 1 at one of the coordinates with index i ∈ B0.

Consider the set S =
(⋃k

i=0 Vi

)
∪ w of

l0 +
k∑

i=1

(li − 1) + 1 =
k∑

i=0

li − k + 1 = n− l− − k + 1

vectors. We will prove that S spans W .
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For any x ∈ V (Fc), consider the vector a = x− w −
∑

i∈B0
(xi − wi)ei. Clearly, ai = 0 for

i ∈ B− ∪ B0, and for each 0 < j ≤ k, if Bj = {i1, i2, . . . , ilj}, then
∑lj

m=1 aim = 0. Then
(ai1 , ai2 , . . . , ailj ) is a linear combination of

((1,−1, 0, . . . , 0), (0, 1,−1, 0, . . . , 0), . . . , (0, . . . , 0, 1,−1)).

Therefore, a is a linear combination of vectors in
⋃k

i=1 Vi. Thus, x = a+w+
∑

i∈B0
(xi−wi)ei

is a linear combination of vectors in S, so S spans W .

Also, S is linearly independent. If it is not, then there is a linear combination β of vectors
in S such that β = bw +

∑
v∈S\{w} bvv = 0 and not all of the bv and b are zero. If l− > 0,

then for some i ∈ B−, 0 = βi = bwi, so b = 0. If k > 0, then |B1| > 0, so

0 =
∑
q∈B1

βq

=
∑
q∈B1

bwq +
∑

v∈S\{w}

bvvq


= b

∑
q∈B1

wq +
∑
q∈B1

∑
v∈S\{w}

bvvq

= b
∑
q∈B1

wq +
∑

v∈S\{w}

bv
∑
q∈B1

vq

= b
∑
q∈B1

wq +
∑

v∈S\{w}

bv · 0

= b
∑
q∈B1

wq.

Therefore, b = 0. Since d < n, we have l0 < n, so either l− > 0 or k > 0. In both cases

b = 0. But then (b1, . . . , bn−l−−k) 6= 0, so
⋃k

i=0 Vi is linearly dependent, which is clearly
not true.

Thus, S spans W and is linearly independent, which means it is a basis of W . Thus
d+ 1 = dim(W ) = |S| = n− l− − k + 1, so d = n− k − l−. �

Proof of Theorem 3.1. To find the number fn−s of (n − s)-dimensional faces we need to
find the number of different ordered partitions (B−, B0, . . . , Bk) of {1, . . . , n} such that
li > 0 for i ≥ 1 and n − s = n − k − l−, i.e., s = k + l−, not satisfying l− = 0, l0 = 1 or
l− = 0, l0 = 0, l1 = 1. For convenience, we will denote l− by m in further computations.
We have s = k +m, so m takes values from 0 to s.

For each m from 0 to s, we first choose m elements for B−. Then, if l0 = 0, we partition the
remaining n−m elements into k = s−m nonempty ordered groups. If l0 ≥ 1, we partition
the remaining n−m elements into k + 1 = s−m+ 1 nonempty ordered groups. Thus we
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have the corresponding Stirling numbers of the second kind multiplied by the number of
permutations of the groups because those are ordered. Note that since we do not consider
c with m = l− = 0 and l0 = 1 or m = l− = 0, l0 = 0, and l1 = 1, we need to subtract the
number of such partitions. So we subtract n · k! · S(n − 1, k) =

(
n
1

)
· s! · S(n − 1, s) and

n · (k − 1)! · S(n− 1, k − 1) =
(
n
1

)
· (s− 1)! · S(n− 1, s− 1). Therefore,

fn−s =

s∑
m=0,m 6=1

(
n

m

)
· ((s−m)! · S(n−m, s−m) + (s−m+ 1)! · S(n−m, s−m+ 1))

=
s∑

m=0,m 6=1

(
n

m

)
· (s−m)! · S(n−m+ 1, s−m+ 1).

�

Using this formula to find the number of edges of Pn, we take n − s = 1, so s = n − 1.

Then since S(a, a− 1) = a(a−1)
2 for any positive integer a,

f1 =

n−1∑
m=0,m 6=1

(
n

m

)
· (n−m− 1)! · S(n−m+ 1, n−m)

=
n−1∑

m=0,m 6=1

(
n

m

)
· (n−m− 1)! · (n−m+ 1)(n−m)

2

=

n−1∑
m=0,m 6=1

n! · (n−m+ 1)

2m!

=
n−1∑
m=1

n! · n
2m!

−
n−1∑
m=2

n!

2(m− 1)!
+

n−1∑
m=1

n!

2m!

=
n

2

(
n−1∑
m=1

n!

m!

)
−

n−2∑
m=1

n!

2m!
+

n−1∑
m=1

n!

2m!

=
n

2
(V − 1) +

n!

2(n− 1)!

=
nV

2
,

where V is the number of vertices of Pn and is equal to n!
(
1
1! + 1

2! + · · ·+ 1
n!

)
. This again

proves Theorem 2.1.

4. Volume

To find the volume of Pn, we split the polytope into n-dimensional pyramids with facets
of Pn not containing I = (1, 1, . . . , 1) as bases and point I as vertex. There are 2n − n− 1
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such pyramids. Now we will derive a recursive formula for the volume of Pn, as a sum of
volumes of these pyramids.

Theorem 4.1. Define a sequence {Vn}n≥0 by V0 = 1 and Vn = Vol (Pn) for all positive
integers n. Then, {Vn}n≥0 satisfies the following recurrence relation,

Vn =
1

n

n−1∑
k=0

(
n

k

)
(n− k)n−k−1(n+ k − 1)

2
Vk,

for all n ≥ 2.

In the proof of this theorem we will use the following “decomposition lemma”.

Proposition 4.2 ([3, Proposition 2]). Let K1, . . . ,Kn be some convex bodies of Rn and
suppose that Kn−m+1, . . . ,Kn are contained in some m-dimensional affine subspace U of
Rn. Let MVU denote the mixed volume with respect to the m-dimensional volume measure
on U , and let MVU⊥ be defined similarly with respect to the orthogonal complement U⊥ of
U . Then the mixed volume of K1, . . . ,Kn

MV (K1, . . . ,Kn−m,Kn−m+1, . . . ,Kn) =

1(
n
m

)MVU⊥(K ′1, . . . ,K
′
n−m)MVU (Kn−m+1, . . . ,Kn),

where K ′1, . . . ,K
′
n−m denote the orthogonal projections of K1, . . . ,Kn−m onto U⊥, respec-

tively.

Proof of Theorem 4.1. Each pyramid has a base which is a facet F with points of Pn

satisfying the equation

xi1 + xi2 + · · ·+ xik = (n− k + 1) + (n− k + 2) + · · ·+ (n− 1) + n

for some k ∈ {1, 2, . . . , n− 2, n} and distinct i1 < · · · < ik.

Let {j1, j2, . . . , jn−k} = {1, 2, . . . , n}−{i1, i2, . . . , ik}. Let P ′n−k be the polytope containing
all points x′ such that x′p = 0 for all p ∈ {i1, i2, . . . , ik} and for some x ∈ F , x′p = xp for
all p ∈ {j1, j2, . . . , jn−k}. Then P ′n−k is an (n− k)-dimensional polytope with the following
defining inequalities:

1 ≤x′jp ≤ n− k, 1 ≤ p ≤ n− k
x′jp + x′jq ≤ (n− k − 1) + (n− k), 1 ≤ p < q ≤ n− k

x′jp + x′jq + x′jr ≤ (n− k − 2) + (n− k − 1) + (n− k), 1 ≤ p < q < r ≤ n− k
...

x′jp1
+ x′jp2

+ · · ·+ x′jpn−k−2
≤ 3 + 4 + · · ·+ (n− k), 1 ≤ p1 < p2 < · · · < pn−k−2 ≤ n− k

x′jp1
+ x′jp2

+ · · ·+ x′jpn−k
≤ 1 + 2 + 3 + 4 + · · ·+ (n− k).
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This means P ′n−k is congruent to Pn−k, so Voln−k(P ′n−k) = Voln−k(Pn−k) = Vn−k.

Let Qk be the polytope containing all points x′ such that for all p ∈ {j1, j2, . . . , jn−k},
we have x′p = 0, and for some x ∈ F , for all p ∈ {i1, i2, . . . , ik}, we have x′p = xp.
Then the coordinate values (x′i1 , x

′
i2
, . . . , x′ik) of vetrices of Qk are the permutations of

(n − k + 1, n − k + 2, . . . , n), meaning Qn is a (k − 1)-dimensional polytope equivalent to

the permutohedron of order k with (k − 1)-dimensional volume kk−2
√
k.

Thus, F is a Minkowski sum of two polytopes P ′n−k and Qk which lie in two orthogonal
subspaces of Rn. Therefore, by Proposition 4.2, the (n − 1)-dimensional volume of F is
equal to

2∑
p1,...,pn=1

MV (Kp1 ,Kp2 , . . . ,Kpn) = Vn−k · kk−2
√
k,

where K1 = P ′n−k and K2 = Qk. Then the volume of the pyramid with F as a base and I
as a vertex is equal to

1

n
hkVol(F ) =

1

n
hkVn−k · kk−2

√
k,

where hk is the distance from point I to the face F , which is equal to

|1 + 1 + · · ·+ 1− ((n− k + 1) + (n− k + 2) + · · ·+ (n− 1) + n)|√
1 + 1 + · · ·+ 1

=
k(2n− k − 1)

2
√
k

.

Thus,

Vol(Pyr(I, F )) =
1

n
· k(2n− k − 1)

2
√
k

Vn−k · kk−2
√
k =

1

n
· k(2n− k − 1)

2
kk−2Vn−k.

Since V0 = 1 and V1 = 0, we get for n ≥ 2,

Vn =
1

n

(
n−2∑
k=1

(
n

k

)
k(2n− k − 1)

2
kk−2Vn−k

)
+

1

n
· n(n− 1)

2
nn−2

=
1

n

(
n−1∑
k=2

(
n

n− k

)
(n− k)(n+ k − 1)

2
(n− k)n−k−2Vk

)
+

1

n
· n

n−1(n− 1)

2

=
1

n

n−1∑
k=0

(
n

k

)
(n− k)n−k−1(n+ k − 1)

2
Vk.

�

For n = 1, 2, . . . , 8 this formula gives the volume values 0, 12 , 4,
159
4 , 492, 588358 , 129237, 4182286516 .

Proposition 4.3. Let f(x) =
∑

n≥0
Vn
n! x

n be the exponential generating function of {Vn}n≥0.

Let g(x) =
∑

n≥1
nn−1

n! x
n be the exponential generating function of {nn−1}n≥1. Then,

f(x) = e
∫ x(g′(x))2

2 .
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Proof. It is known that g(x) = xeg(x), so

(*) g′(x) = eg(x) + xeg(x) =
g(x)

x
+ g(x)g′(x).

From Theorem 4.1,

n · Vn
n!

=
n−1∑
k=0

(n− k)n−k−1(n+ k − 1)

2(n− k)!
· Vk
k!

=
n−1∑
k=0

(n− k)n−k−1(n− k + 2k − 1)

2(n− k)!
· Vk
k!

=

n−1∑
k=0

1

2
· (n− k)n−k

(n− k)!
· Vk
k!

+

n−1∑
k=0

(n− k)n−k−1k

(n− k)!
· Vk
k!
−

n−1∑
k=0

1

2
· (n− k)n−k−1

(n− k)!
· Vk
k!
.

Therefore,

f ′(x) =
1

2
g′(x)f(x) + g(x)f ′(x)− 1

2x
g(x)f(x).

Then,

f ′(x)(1− g(x)) =
1

2x
(xg′(x)− g(x))f(x) =

by(∗)

1

2x
xg(x)g′(x)f(x) =

1

2
g(x)g′(x)f(x),

so

f ′(x) =
g(x)g′(x)f(x)

2(1− g(x))
=

by(∗)

g(x)g′(x)f(x)

2( g(x)
xg′(x))

=
x(g′(x))2

2
f(x).

Thus, f(x) = ce
∫ x(g′(x))2

2 . It is clear that c = 1, so f(x) = e
∫ x(g′(x))2

2 . �

5. Lattice Points

In this section we are going to find the number of integer points in Pn.

Proposition 5.1. Let Pn,S be the set of points x in Pn satisfying x1 + · · ·+ xn = S. For

each integer S from n + 1 to n(n−1)
2 there is a unique pair of positive integers (r, k) such

that 2 ≤ r ≤ k + 1,

1 + · · ·+ 1︸ ︷︷ ︸
k ones

+r + (k + 2) + · · ·+ n = S,

and the set of vertices of Pn,S is the set of permutations of (1, . . . , 1, r, k + 2, . . . , n). For
the case S = n, the set of vertices of Pn,n is just one vertex (1, . . . , 1).

Proof. It is clear that if S = n, then the only point x in Pn,S satisfies x1 = · · · = xn = 1.
For this case we can say k = n and r is unnecessary.
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Since 1 + · · ·+ 1 < 1 + · · ·+ 1 + n < · · · < 1 + 2 + · · ·+ n, for each S from n+ 1 to n(n−1)
2

there is a unique k ≤ (n− 1) such that

1 + · · ·+ 1 + (k + 2) + · · ·+ n < S ≤ 1 + · · ·+ 1 + (k + 1) + · · ·+ n.

Then 0 < S − (1 + · · ·+ 1 + (k + 2) + · · ·+ n) ≤ k, so take

r = 1 + S − (1 + · · ·+ 1 + (k + 2) + · · ·+ n)

for which 1 < r ≤ k + 1. Then indeed 1 + · · ·+ 1 + r + (k + 2) + · · ·+ n = S.

Suppose there is another (r′, k′) such that 1 + · · ·+ 1 + r′+ (k′+ 2) + · · ·+n = S. If k < k′,
then

1 + · · ·+ 1 + r′ + (k′ + 2) + · · ·+ n ≤
1 + · · ·+ 1 + (k′ + 1) + (k′ + 2) + · · ·+ n ≤

1 + · · ·+ 1 + (k + 2) + · · ·+ n <

1 + · · ·+ 1 + r + (k + 2) + · · ·+ n,

contradiction. Thus, k ≥ k′. Similarly, k′ ≥ k, so k = k′, from where it is clear that r = r′.

Now we will prove that set of vertices of Pn,S is the set of permutations of (1, . . . , 1, r, k +
2, . . . , n). Let a = (a1, . . . , an) be a vertex of Pn,S . Since Pn,S is invariant under coordinate
permutation, we may assume a1 ≤ · · · ≤ an.

If there is no 1 ≤ k ≤ n such that ak < k, then clearly ai = i for all 1 ≤ i ≤ n. In this
case k = 1, r = 2, and a is indeed a permutation of (1, . . . , 1, r, k+ 2, . . . , n) = (1, 2, . . . , n).
Otherwise, take the greatest 1 ≤ k ≤ n such that ak < k. Then a = (a1, . . . , ak, k+1, . . . , n).

Case 1. ak = ak−1.

Suppose c = am = · · · = ak ≤ k − 1 and am−1 6= c. Then

c =
am + · · ·+ ak
k −m+ 1

≤ m+ · · ·+ k

k −m+ 1
=
m+ k

2
.

Suppose c > 1. Then there exists ε > 0 such that ε ≤ j−m
2 (k − j + 1) for each j from

m + 1 to k. Consider x = (a1, . . . , am−1, am − ε, am+1, . . . , ak−1, ak + ε, . . . , an). For any
m+ 1 ≤ j ≤ k,

aj + · · ·+ ak + ε = c(k − j + 1) + ε

≤ m+ k

2
(k − j + 1) +

j −m
2

(k − j + 1)

=
j + k

2
(k − j + 1)

= j + · · ·+ k.
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This means x satisfies all the defining inequalities of Pn, so x ∈ Pn,S . Therefore, x′ =
(a1, . . . , am−1, am + ε, am+1, . . . , ak−1, ak− ε, . . . , an) is also in Pn,S since it is just a permu-

tation of x. But then a = 1
2x+ 1

2x
′, so a is not a vertex of Pn,S if c > 1.

Therefore, c = 1, and since 1 ≤ a1 ≤ · · · ≤ ak = c = 1, we have a1 = · · · = ak = 1 and
S = 1 + · · ·+ 1 + (k + 1) + · · ·+ n, so (r, k) = (k + 1, k) and a is indeed a permutation of
(1, . . . , 1, r, k + 2, . . . , n).

Case 2. ak > ak−1.

Then, since ak−1 ≥ 1, we have ak ≥ 2. Suppose c = am = · · · = ak−1 < ak ≤ k − 1 and
am−1 6= c. Then

c =
am + · · ·+ ak−1

k −m

=
am + · · ·+ ak−1 + ak − ak

k −m

≤ m+ · · ·+ k − ak
k −m

=
1
2(m+ k)(k −m+ 1)− ak

k −m
.

Suppose c > 1. For any j from m+ 1 to k,

(j + · · ·+ k)− (aj + · · ·+ ak) =
1

2
(j + k)(k − j + 1)− c(k − j)− ak

≥ 1

2
(j + k)(k − j + 1)− (k − j)

1
2(m+ k)(k −m+ 1)− ak

k −m
− ak

=
1

2
(j + k)(k − j + 1)− (k − j)

1
2(m+ k)(k −m+ 1)

k −m
+ ak

(
m− j
k −m

)
>

1

2
(j + k)(k − j + 1)− (k − j)

1
2(m+ k)(k −m+ 1)

k −m
+
k(m− j)
k −m

=
(k − j)(j −m)

2
≥ 0.

Then there exists ε > 0 such that ε < (j + · · ·+ k)− (aj + · · ·+ ak) for each j from m+ 1
to k.

Consider x = (a1, . . . , am−1, am− ε, am+1, . . . , ak−1, ak + ε, . . . , an). For any m+ 1 ≤ j ≤ k,
aj + · · ·+ ak + ε < j + · · ·+ k. This means x satisfies all the defining inequalities of Pn, so
x ∈ Pn,S . Also, x′ = (a1, . . . , am−1, am + ε, am+1, . . . , ak−1, ak − ε, . . . , an) is also in Pn,S .

But then a = 1
2x+ 1

2x
′, so a is not a vertex of Pn,S if c > 1.

Therefore, c = 1 and since 1 ≤ a1 ≤ · · · ≤ ak−1 = c = 1, we have a1 = · · · = ak−1 = 1.
Then S = 1 + · · · + 1 + ak + (k + 1) + · · · + k, where 2 ≤ r = ak < k, so a is indeed a
permutation of (1, . . . , 1, r, k + 1, . . . , n). �
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Thus, we have that Pn,S is a permutohedron with permutations of (1, . . . , 1, r, k+2, . . . , n) as
its vertices. In the case S = n, Pn,S is a permutohedron consisting of one point (1, . . . , 1). In
other words, Pn,S is the convex hull of all permutations of vector (x1, . . . , xn), where

(x1, . . . , xn) =

{
(1, . . . , 1, r, k + 2, . . . , n), if S > n,

(1, . . . , 1), if S = n.

Let N(P ) denote the number of integer points in a polytope P . Then,

N(Pn) =

n(n−1)
2∑

S=n

N(Pn,S).

Let From [2, Section 4], Pn,S is a generalized permutohedron Pn−1(Y) with YI = y|I| for
any I ⊂ [n] and

y1 = x1

y2 = x2 − x1
y3 = x3 − 2x2 + x1

...

yn =

(
n− 1

0

)
xn −

(
n− 1

1

)
xn−1 + · · · ±

(
n− 1

n− 1

)
x1.

So by [2, Theorem 4.2],

N(Pn,S) =
1

(n− 1)!

∑
(S1,...,Sn−1)

{
YS1 · · ·YSn−1

}
,

where the summation is over ordered collections of subsets S1, . . . , Sn−1 ⊂ [n] such that for
any distinct i1, . . . , ik, we have |Si1 ∪ · · · ∪ Sik | ≥ k + 1, and{∏

I

Y aI
I

}
:= (Y[n] + 1){a[n]}

∏
I 6=[n]

Y
{aI}
I , where Y {a} = Y (Y + 1) . . . (Y + a− 1).
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