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Abstract

We study the problem of testing if a graph has a cluster structure in the framework
of graph property testing. Given some ε, we say that a graph with a degree bound d
is (k, φ) clusterable if it can be partitioned into at most k parts such that the inner
conductance of each part is at least φ and the outer conductance of each part is at most
cd,kφ

2. We present an algorithm that accepts all graphs that are (k, φ)−clusterable with
probability at least 2

3 and rejects all graphs that are ε-far from (k, φ∗)-clusterable for
φ∗ ≤ cd,kµφ

2ε2 where 0 < µ < C for some constant C. This improves upon the work
of Czumaj, Peng, and Sohler in [2] by removing a log n factor from the denominator
of φ∗. Our technique combines the ideas present in [2, 7] in addition to a new spectral
perspective. Currently this edition of the paper only has a proof for the case of k = 2
but the proof for all k will be given in a future edition of the paper.

1 Introduction

1.1 Background on Property Testing

In this paper, we study property testing of graphs in the bounded degree model. We are
given a graph G = (V,E) on n vertices where all the vertices have degree at most d. Given
a graph property P , we say that G is ε-far from satisfying P if εdn edges need to be added
or removed from G for G to satisfy P . A property testing algorithm for P is an algorithm
that accepts every graph G with P with probability at least 2

3
and rejects every graph that

is ε-far from having P with probability at least 2
3
.

We assume that the representation of G is given as an oracle which allows us to find
the ith neighbor of any vertex v if i ≤ d. If i is larger than the degree of v, then a special
symbol is returned. The complexity of a graph property testing algorithm is measured in
terms of its query complexity, or the number of queries the algorithm accesses from the
oracle. Therefore, the goal of property testing algorithms is to find an algorithm with an
efficient query complexity. This framework of property testing of graphs was developed by
Goldreich and Ron [4]. has been applied to study various properties such as bipartiteness
[5] and 3-colorability [4]. See [4] and [9] for some more examples.

Our paper deals with a slightly different definition of property testing. We test for a
property P that is parameterized by a parameter α such that P(α) ⊆ P(α′) if α ≤ α′. We
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then accept graphs with property P(α) with probability at least 2
3

and reject graphs that
are ε-far from having property P(α′) with probability at least 2

3
where α < α′.

1.2 Testing k-clusterability

We are interested in the property of k clusterability as introduced by Czumaj, Peng, and
Sohler in [2]. Roughly, a graph is k-clusterable if it can be partitioned into at most k clusters
where vertices in the same cluster are ‘well connected’ while vertices in different clusters are
‘well-separated.’ The quality of the clusters will be measured in terms of their inner and outer
conductance, which are defined below. The idea of using conductance for graph clustering
has been studied in numerous works, such as [10].

More formally, if S ⊂ V such that |S| ≤ |V |/2, the conductance of S is defined as

φG(S) = e(S,V \S)
d|S| where e(S, V \ S) is the number of edges between S and (V \ S). The

conductance of G is defined to be the minimum conductance over all subsets |S| ≤ V/2 and
is denoted as φ(G). Now for any S ⊆ V , let G[S] denote the induced subgraph of G on the
vertex set defined by S. We will let φ(G[S]) denote the conductance of this subgraph. To
avoid confusion, if S ⊆ V , we will call φG(S) the outer conductance of S and φ(G[S]) the
inner conductance.

We say G is (k, φ)-clusterable if there exits a partition of V into at most k subsets Ci such
that φ(G[Ci]) ≥ φ but φ(Ci) ≤ cd,kφ

2 for all i. where cd,k is a constant that depends only on
d and k. Czumaj et al. have created an algorithm that accepts all (k, φ)-clusterable graphs
with probability at least 2

3
and rejects all graphs that are ε-far from (k, φ∗)-clusterable graphs

where φ∗ = c′d,k
φ2ε4

logn
, where cd,k depends only on d, k. Our work improves upon this result by

removing the log n dependency. We present an algorithm that accepts all (k, φ)-clusterable
graphs with probability at least 2

3
and rejects all graphs that are ε-far from (k, φ∗)-clusterable

with probability at least 2
3

where φ∗ = c′′d,kφ
2ε2. In this writeup, we only present the case of

k = 2 and our paper on a general k will be available on the arxiv shortly. We rely on spectral
tools to remove the log n dependency. Specifically, our algorithm works by sampling a minor
of a power of M, the lazy random walk matrix. We then reject the graph if all eigenvalues
of this matrix are ‘large’ and accept otherwise. Our main result is the following.

Theorem 1.1. Let cd,k be a constant depending on d and k. Then, Algorithm 2.1 accepts
every (k, φ)-clusterable graph of maximum degree at most d with probability at least 2

3
and and

rejects every graph of maximum degree at most d that is ε-far from being (k, φ∗)-clusterable
with probability at least 2

3
if φ∗ ≤ µcd,kφ

2ε2 and 0 < µ < C for some constant C.

As stated above, the current writeup will only present the case of k = 2 with the analysis
for a general k in a forthcoming paper.

1.3 Related Work

Testing k-clusterability was inspired by property testing of expansions which has been well
studied. A graph is called an α expander if if every S ⊂ V of size at most V/2 has a
neighborhood of size at least α|S|. Czumaj and Sohler [3] showed that an algorithm of
Goldreich and Ron [6] can distinguish between α expanders of degree bound d and graphs
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which are ε far from having expansion at least Ω(α2/ log(n)). This work was subsequently
improved by Kale and Seshadhri [7] and then by Nachmias and Shapira [8] who showed that
the algorithm of Goldreich and Ron can actually distinguish graphs which are α expanders
between graphs which are ε-far from Ω(α2) expanders.

The work of Czumaj et al. for testing k-clusterability also uses property testing of
distributions, such as testing the l2 norm of a discrete distribution and testing the closeness
of two discrete distributions are both used. For some work on testing the norm of a discrete
distribution and testing closeness of discrete distributions, see [3] and [1] respectively.

1.4 Definitions

In this section we introduce some definitions and tools that we will be used in our analysis.
Given a graph G with degree bound d, we let M denotes its lazy random walk matrix and
2I − 2M denotes its Laplacian matrix L. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 denote the
eigenvalues of L and let v1, · · · ,vn denote the corresponding orthonormal eigenvectors. Let
ν1 ≥ ν2 ≥ · · · ≥ νn denote the eigenvalues of M where νi = 1− λi

2
for 1 ≤ i ≤ n.

For u ∈ G, we will denote ptu as the probability distribution of the endpoint of a length
t random walk that starts at vertex u. That is,

ptu = 1uM
t =

n∑
i=1

vi(u)

(
1− λi

2

)t
vi.

It will also be convinient to expander our definition of (k, φ)-clusterable. For an undirected
graph G, and parameters k, φin, φout, we define G to be (k, φin, φout)-clusterable if there
exists a partition of V into h subsets C1, · · ·Ch such that 1 ≤ h ≤ k and for each i, 1 ≤
i ≤ h, φ(G[C]) ≥ φin and φG(Ci) ≤ φout. Hence in our case, we want to accept graphs that are
(k, φ, cd,kφ

2)-clusterable and reject graphs that are ε−far from (k, µφ2ε2, c′d,kφ
4ε4)−clusterable.

In this paper, we will denote ‖·‖ to denote the l2 norm. We will also need the following
result from [11] which roughly states that eigenvalues are stable under a good approximation.

Theorem 1.2. Let H = A + P and suppose H has eigenvalues µ1 ≥ · · · ≥ µn and A has
eigenvalues ν1 ≥ · · · ≥ νn. Furthermore, suppose ‖P‖2 ≤ ε. Then, |µi − νi| ≤ ε for all
1 ≤ i ≤ n.

Our algorithm relies on estimating dot products and norms of various distributions.
Therefore, we need the following results about distribution property testing.

Theorem 1.3. [1, Theorem 1.2] Let δ, ξ > 0 and let p,q be two distributions over a set n

with b ≥ max(‖p‖2 , ‖q‖2). Let r > Ω
(√

b
ξ

log 1
η

)
. Then there exists an algorithm denoted by

l2-Inner-Product-Estimator that takes as input r samples from each distribution p,q,
and returns an estimate of 〈p, q〉 that is accurate to within O(ξ) with probability at least 1−η.

Theorem 1.4. [2, Lemma 3.2] Let G = (V,E) with |V | = n. Let v ∈ V, σ > 0, and
r ≥ 16

√
n. There exists an algorithm denoted as l2-Norm-Tester that takes as input r

samples from ptv and accepts the distribution of ‖ptv‖
2 ≤ σ

4
and rejects the distribution if

‖ptv‖ > σ, with probability at least 1− 16
√
n

r
.
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2 The Algorithm

In this section, we describe our algorithm referenced in Theorem 1.1. As stated section 1.2 ,
our algorithm performs lazy random walks and uses the distribution testing results 1.3 and
1.4 to approximate a minor of a power of M . For all v in V, we define qtv = ptv − 1

n
1. We

also define the minor Au,v of M2t − 1
n
J as

Au,v =

[
‖qu‖2 〈qu,qv〉
〈qv,qu〉 ‖qv‖2

]
.

Our algorithm is the following:

Algorithm 2.1: Cluster-Test(G,S,N, t, σ, µ, ξ)

1 for S rounds do
2 Pick a pair of vertices u and v uniformly at random from G.
3 Run N random walks of length t.

4 Using the results of 3 as an input, test if either ‖ptu‖
2 ≥ σ or ‖ptv‖

2 ≥ σ through
the l2 −Norm-Tester as defined in 1.4. If so, abort and reject.

5 Using the results of 3 as an input and the l2-Inner-Product-Estimator,

approximate each entry of Au,v within ξ. Call the approximation Ãu,v.

6 Abort and reject if both the eigenvalues of Ãu,v are larger than 3
n1+µ .

7 Accept.

3 Proof of Theorem 1.1.

We will now prove our main result, theorem 1.1. In the Cluster-Test, we set θ < 3−2
√
2

48
, S =

128·11522
ε4θ2

, 0 < µ < C where C = min(1, 1
2(512c4.5c25.1−1)

), γ = η = 1
8S
, r = 16

√
n

η
, N = O(n1/2+µ), t =

64c25.1 log(n)

φ2
, σ = 4

γn
.

3.1 Completeness: Accepting (k, φ)−clusterable Graphs.

We will show that the Cluster-Test algorithm with the parameters defined above accepts
G with probability greater than 2

3
if G is (2, φ, cdφ

2)−clusterable. We will do this by showing
that if G is 2-clusterable, then the vectors qtv are essentially ‘one dimensional.’ Hence, the
matrices Au,v should be close to rank 1 which by Theorem 1.2, at least one eigenvalue of
Au,v should be sufficiently small. First we need a result from [2] that states that there is a
gap between the kth and the k + 1th eigenvalue of M if G is (k, φin, φout)-clusterable.

Lemma 1. [2, Lemma 5.2] If G is a weighted d-regular graph and (k, φin, φout)-clusterable
then there exists h, 1 ≤ h ≤ k, and a constant c5.1 such that λi ≤ 2φout for any i ≤ h and

λi ≥ φ2in
c25.1h

4 for any i ≥ h+ 1.
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We will also use the following result from [2] which states that (k, φin, φout)-clusterable
are accepted with sufficiently high probability in step 4 of Algorithm 2.1.

Lemma 2. [2, Lemma 4.3]. Let 0 < γ < 1. If G is (k, φin, φout)-clusterable, then there

V ′ ⊆ V with |V ′| ≥ (1 − γ)|V | such that for any u ∈ V ′ and any t > c4.3k4 log(n)

φ2in
, for some

universal constant c4.3, the following holds:∥∥ptu∥∥2 ≤ 2k

γn
.

The next two lemmas tell us that for (k, φin, φout)-clusterable graphs, qu = pu − 1
n
1 is

well approximated by its projection onto v2 for all vertices u in G.

Lemma 3. Let G be (2, φin, φout)-clusterable. For a vertex u, let p′tu be the projection of pv

onto the space spanned by v3, . . . ,vn. Then ‖ptu − p′tu‖
2 ≤

(
1− φ2in

32c25.1

)2t
.

Proof. Write ptu in the eigenbasis of L. Then,

∥∥ptu − p′tu
∥∥2 =

n∑
i=3

(
1− λi

2

)2t

vi(u)2

≤
(

1− λ3
2

)2t n∑
i=3

vi(u)2

≤
(

1− φ2
in

32c25.1

)2t

.

We can rewrite the conclusion of lemma 3 in a slightly more useful statement.

Lemma 4. Let u and v be two vertices. Then we can find eu and ev such that both qtu + eu

and qtv + ev lie on a line through the origin and max(‖eu‖2 , ‖ev‖2) <
(

1− φ2in
32c25.1

)2t
.

Lemma 5. Let G be (2, φin, φout)-clusterable and let u, v be any two vertices in G. Then

Au,v has an eigenvalue less than
√

2
(

1− φ2in
32c25.1

)t
.

Proof. We know that Au,v is a gram matrix and hence positive semi-definite. Therefore, we
can write Au,v = κ21w1w

T
1 + κ22w2w

T
2 where 〈w1, w2〉 = 0. Now let M1 be a n× 2 matrix with

columns qu and qv and define M2 = κ1w1w
T
1 +κ2w2w

T
2 . Denote the columns of M2 as q′u,q

′
v.

By the orthogonality of w1 and w2, we have that MT
1 M1 = MT

2 M2. Hence, U = M1M
−1
2 is

an orthogonal matrix and the image of q′u is qu and similarly, the image of q′v is qv.

Now by Lemma 4, we know we can find eu and ev such that ‖eu‖ , ‖ev‖ <
(

1− φ2in
32c25.1

)t
such that M1 plus the matrix with columns eu, ev is rank 1. Since U is orthogonal, we can

find e′u, e
′
v such that ‖e′u‖ , ‖e′v‖ <

(
1− φ2in

32c25.1

)t
such that M2 plus the matrix with columns

e′u, e
′
v is rank 1. By Weyl’s inequality (Theorem 1.2), this means that one of κ1, κ2 must be

smaller than
√

2
(

1− φ2in
32c25.1

)t
.
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Combining the above lemmas, we get the following lemma.

Lemma 6. For the parameters specified in section 3, Algorithm 2.1 accepts (2, φ, cdφ
2)-

clusterable graphs with probability greater than 2
3
.

Proof. From Lemma 2, we know that in step 4 of the algorithm, we accept with probability
(1 − γ)2. After this step, we know that by Lemma 5 that Au,v has an eigenvalue that is at

most
√

2
(

1− φ2in
32c25.1

)t
≤
√

2n−2. When we estimate Au,v with Ãu,v in step 5 of Algorithm

2.1, the eigenvalues of A shift by at most 3
n1+µ by Weyl’s inequality [11]. Then by the union

bound, the probability that we reject is at most

S(1− (1− γ)2 + γ2η) <
1

4
+

1

64
<

1

3
.

3.2 Soundness: Rejecting Graphs ε-far from (k, cd,kµφ
2)-clusterable.

We will show that Algorithm 2.1 rejects G with probability greater than 2
3

if G is ε- far from
(2, µφ2ε2, cdµ

2φ4ε4)-clusterable. We will do this by showing that if (u, v) is a ‘representative’
pair of vertices of G, then we need to perturb qu and qv by vectors of sufficiently large norm
for qu and qv to lie on a line through the origin. This will imply that both of the eigenvalues
of Au,v are large. We will also show that there a positive fraction of all pairs of vertices are
representative and hence Algorithm 2.1 will find a representative pair with high probability.

We need the following inverse theorem from [2] which states that if G is ε-far from
(k, φin, φout)-clusterable then we can partition G into subsets of vertices that have sparse
cuts between them.

Lemma 7. [2, Lemma 4.5] If G is ε-far from (k, φin, φout)-clusterable with φin ≤ α4.5ε, then
there exists a partition of V into k + 1 subsets V1, · · · , Vk+1 such that for each i, 1 ≤ i ≤
k + 1, |Vi| = Ω(ε2|V |/k) and φG(Vi) ≤ c4.5φinε

−2.

Given Lemma 7 as a starting point, we now show that there are sufficiently many pairs of
vertices (u, v) such that that qu and qv are far from being ′onedimensional.′ More precisely,
we show that there is a positive fraction of pairs (u, v) such that if the origin, qu + eu and
qv + ev are collinear, then we must have max(‖eu‖ , ‖ev‖) be sufficiently large. In the first
step of our analysis which is Lemma 8, we borrow some of the tools from [7].

Lemma 8. Let S1 and S2 be two disjoint subsets of vertices such that the cut (Si, V \ Si)
has conductance less than δ. Suppose that |S1|+ |S2| ≤ 2

3
n and let ptS1

=
∑

v∈S1
ptv,

ptS2
=
∑

v∈S2
ptv,q

t
S1

= ptS1
− 1

n
1, and qtS2

= ptS2
− 1

n
1. Let Π denote the projection onto the

eigenvectors of M with eigenvalues greater than 1−2δ.Then if |α|+ |β| ≥ 1, |α|, |β| ≤ 1, and
|α + β| ≤ 1, ∥∥αΠq0

S1
+ βΠq0

S2

∥∥2 ≥ 1

12(|S1|+ |S2|)
.
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Proof. Let s1 = |S1|, s2 = |S2|. Let α ∈ R and define the vector f as

f(v) =


α
s1

if v ∈ S1

β
s2

if v ∈ S2

0 otherwise

and let u = f − α+β
n

1 = αq0
S1

+ βq0
S2
. Write u in the eigenbasis of M as u =

∑
i civi. We

have

‖u‖2 =
∑
i

β2
i =

α2

s1
+
β2

s2
− (α + β)2

n

≥ α2

s1
+
β2

s2
− 1

n
.

Therefore,

uTLu = ‖u‖2 −
∑
i

c2iλi

=
∑
i<j

Mij(ui − uj)2

≤ 1

2d

2α2

s21
δds1 +

1

2d

2β2

s22
δds2

= δ

(
α2

s1
+
β2

s2

)
.

From above, it follows that∑
i

c2iλi >
α2

s1
+
β2

s2
− 1

n
− δ

2

(
α2

s1
+
β2

s2

)
.

Call λi > 1 − 4δ ‘heavy.’ Let H be the set of indices of the heavy eigenvalues. Letting
x =

∑
i∈H β

2
i , we have

x+

(∑
i

c2i − x

)
(1− 4δ) >

α2

s1
+
β2

s2
− 1

n
− δ

2

(
α2

s1
+
β2

s2

)
which implies that

x >
3

4

(
α2

s1
+
β2

s2

)
− 1

n
.

By Cauchy-Schwartz,
α2

s1
+
β2

s1
≥ |α|+ |β|

s1 + s2
≥ 1

s1 + s2
.

Now
2

3(s1 + s2)
≥ 1

n
=⇒ x ≥ 1

12(s1 + s2)
.
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Hence, ∥∥αΠq0
S1

+ βΠq0
S2

∥∥2 ≥ 1

12(|S1|+ |S2|)
.

We will now show that the conclusions of Lemma 8 also hold if we consider a large subset
of S1 and S2.

Lemma 9. Let S1 and S2 be two disjoint subsets of vertices that satisfy the conditions of
Lemma 8. Let Ti ⊆ Si and |Ti| = (1− θ)|Si| where θ is a sufficiently small constant for each
i. Let qtT1 =

∑
v∈T1 qtv and qtT2 =

∑
v∈T2 qtv. Furthermore, define α, β, and Π as in Lemma

8. Then ∥∥αΠq0
T1

+ βΠq0
T2

∥∥2 ≥ ( 1√
12
− 2
√
θ

)2
1

|S1|+ |S2|
.

Proof. Let qtS1
=
∑

v∈S1
qtv and qtS2

=
∑

v∈S2
qtv. Using the fact that |Ti| = (1 − θ)|Si| for

each i, we can compute that

∥∥αq0
S1

+ βq0
S2
−
(
αq0

T1
+ βq0

T2

)∥∥2 =
θ

1− θ

(
α2

s1
+
β2

s2

)
≤ 2θ

(
α2

s1
+
β2

s2

)
.

Write αqtS1
+ βqtS2

=
∑

i civi and αqtT1 + βqtT2 =
∑

iwivi and let H denote the set of
eigenvalues larger than 1− 2δ just like in Lemma 8. We have∥∥αq0

S1
+ βq0

S2
− αq0

T1
− βq0

T2

∥∥2 ≥∑
i∈H

(βi − wi)2.

Let S = 1
s1+s2

. From lemma 8 and the triangle inequality,

∑
i∈H

w2
i >

√∑
i∈H

β2
i −

√∑
i∈H

(βi − wi)2

2

>

( √
S√
12
− 2
√
θS

)2

= S

(
1√
12
− 2
√
θ

)2

,

as desired.

Lemma 9 states that the line segment from qT1 to qT2 and the line segment from qT1 to
−qT2 does not pass close to the origin. We now need a similar lemma that states that this
happens for not only the averages qT1 and qT2 , but also for a large number of pairs of vertices.
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Lemma 10. Let the sets S1 and S2 constant θ, and matrix Π satisfy the conditions of lemma
9. Then there are at least θ2|S1||S2| pairs (u, v) where u ∈ S1, v ∈ S2, such that the following
holds:

min
0≤α≤1

∥∥αΠq0
u + (1− α)Πq0

v

∥∥2
2
≥

(
1

24
− 2θ −

√
θ√
3

)
1

|S1|+ |S2|
. (1)

Proof. Call a pair (u, v) bad if it does not satisfy (3) and good otherwise. Suppose for the
sake of contradiction that there are more than (1− θ2)|S1||S2| bad pairs. We will now show
that there is a set T ⊆ S1 where |T | ≥ (1 − θ)|S1| such that for all u ∈ T, there are more
than (1− θ)|S2| vertices v in S2 such that the pair (u, v) is bad. This must be true because
otherwise, the number of bad pairs is at most

θ|S1||S2|+ (1− θ)2|S1||S2| < (1− θ2)|S1||S2|.

Hence, such a set T must exit. Now for every u ∈ T, let Tu denote the set of vertices in S2

such that (u, v) is a bad for pair for all v ∈ Tu and let qtTu =
∑

v∈Tu qtv. We now claim that

min
0≤α≤1

∥∥αΠq0
u + (1− α)Πq0

Tu

∥∥2
2
≤

(
1

24
− 2θ −

√
θ√
3

)
1

|S1|+ |S2|
. (2)

Suppose for the sake of contradiction that inequality (2) is not true. Consider the plane
that passing through the origin O,Πqtu and ΠqtTu (see figure 1 for reference). If (2) does
not hold, then the line segment L connecting Πqtu and ΠqtTu lies entirely outside the circle
C centered at the origin with radius equal to the right hand side of (2). By the hyperplane
separation theorem, we know that there is a line l that separates L and C. Furthermore, we
can guarantee that l never intersects C. Consider the two half spaces formed by l. From the
definition of ΠqTu , we know that there is a point v′ ∈ Tu such that Πqtv′ lies on the half space
not containing C. Hence, the line segment from Πqtu and Πqtv′ does not pass C. However,
contradictions our assumption on the set Tu. Hence, the first inequality in (2) must hold.
Now let qtS2

=
∑

v∈S2
qtv. Letting β = 1− α, we have∥∥αΠq0
u + βΠq0

S2

∥∥
2

=
∥∥αΠq0

u + βΠq0
Tu + βΠ(q0

S2
− q0Tu)

∥∥
2

≤
∥∥αΠq0

u + βΠq0
Tu

∥∥
2

+ |β|
∥∥q0

Tu − q0
S2

∥∥
2
.

We first bound the second term.

|β|
∥∥p0

S2
− p0

Tu

∥∥2
2

=
θ

(1− θ)|S2|
≤ 2θ

|S2|
≤ 4θ

|S1|+ |S2|

Then using (2), we have

min
0≤α≤1

∥∥αΠq0
u + βΠq0

S2

∥∥2
2
≤ 2

((
1√
24
−
√

2θ

)2
1

|S1|+ |S2|
− 4θ

|S1|+ |S2|

)
+

8θ

|S1|+ |S2|

=

(
1√
12
− 2
√
θ

)2
1

|S1|+ |S2|
.
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Note that u was an arbitrary vertex in T . By letting qtT =
∑

u∈T q
t
u and using the same

geometric argument as above, we have that

min
0≤α≤1

∥∥αΠq0
T + (1− α)Πq0

S2

∥∥2
2
≤
(

1√
12
− 2
√
θ

)2
1

|S1|+ |S2|
.

However, this is a contradiction to lemma 9 so we are done. Hence, there must be at least
θ2|S1||S2| pairs (u, v) where u ∈ S1, v ∈ S2, such that (3) holds.

The conclusion of Lemma 10 also holds true if we let β = α−1. In this case, the argument
is similar except we consider the line segment passing through Πqtu and −ΠqtTu . Now we
need to show that there are sufficiently many pairs (u, v) where u ∈ S1 and v ∈ S2 such that
both the line segment from qu to qv and the line segment from qu to −qv does not pass
close to the origin.

Lemma 11. Let the sets S1 and S2 constant θ, and matrix Π satisfy the conditions of Lemma
9. Then there are at least θ2|S1||S2| pairs (u, v) where u ∈ S1, v ∈ S2, such that both the
following hold:

min
0≤α≤1

∥∥αΠq0
u + (1− α)Πq0

v

∥∥2 ≥ ( 1

24
− 2θ −

√
θ√
3

)
1

|S1|+ |S2|
,

min
0≤α≤1

∥∥αΠq0
u + (α− 1)Πq0

v

∥∥2 ≥ ( 1

24
− 2θ −

√
θ√
3

)
1

|S1|+ |S2|
.

(3)

Proof. The proof of this lemma will be given in a future edition of the paper.

O
C

Πqtu
ΠqtTu

Πqtv′

l

Figure 1: If the line segment connecting Πqtu and ΠqtTu does not intersect circle C then there
must be a separating line H. Furthermore, there is a point Πqtv′ , where v′ ∈ Tu, that lies on
the opposite side of C with respect to H. Hence the segment connecting Πqtu and Πqtv′ does
not intersect C.

We now combine Lemmas 7 and 9. Furthermore, from our choice of constants in Section
3, we arrive at the following lemma.
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Lemma 12. Let c = 512c4.5c
2
5.1. Call a pair (u, v) representative if both

min
0≤α≤1

∥∥αqtu + (1− α)qtv
∥∥ = Ω

(
1

n1/2+cµ

)
and

min
0≤α≤1

∥∥αqtu + (1− α)(−qtv)
∥∥ = Ω

(
1

n1/2+cµ

)
.

A randomly chosen pair is representative with probability at least θ2.

Lastly, we will show that if a pair (u, v) is representative, then we need to preturb qu
and qv by vectors with large norm for the origin, q1, and q2 to be colliniear.

Lemma 13. Suppose
min
0≤α≤1

‖αq1 + (1− α)q2‖ ≥ R

and
min
0≤α≤1

‖αq1 + (1− α)(−q2)‖ ≥ R.

Let e1 and e2 be such that the origin, q1+e1, and q2+e2 are collinear. Then, max(‖eu‖ , ‖ev‖) ≥
R.

Proof. See figure 2 for a reference. Consider the plane that passes through the origin O,q1,
and q2. Let C denote the circle centered at the origin with radius R and let C ′ denote the
circle centered at the origin that passes through q1. Let q̃2 denote the projection of q2 onto
C ′. The first inequality in the lemma implies that the line segment connecting q1 and q2
does not intersect C. Then by considering the tangents from q1 to C, we see that there is
a sector S ′ on C ′, formed by the intersection of the tangents with C ′, such that q̃2 cannot
lie on this sector. The angle of this sector is precisely 4 arcsin(R/ ‖q1‖) := 4φ. The second
statement tells us that the line segment connecting q1 and −q2 does not intersect C. Hence,
by reflecting −q2 across the origin, we see that there is a sector S ′′ identical to S ′ such that
q1 is at the midpoint of this sector. Furthermore, q̃2 also cannot lie on this sector.

So far, we have shown that q̃2 cannot be close to diametrically opposite of q1 and that
q1 and q̃2 cannot be close on C ′. Now let L be an arbitrary line through the origin and let
q′ denote the intersection of L with C ′. We claim that max(∠q1Oq′,∠q̃2Oq′) > φ. Indeed,
without loss of generality, we can assume that q̃2 lies on the upper half circle with respect to
q1, i.e., 0 ≤ ∠q1Oq̃2 ≤ π. We now consider two cases. If q′ lies on the smaller arc connecting
q1 and q̃2, then it is clear that the smallest max(∠q1Oq′,∠q̃2Oq′) can be is when q̃2 lies on
the boundary of S ′′ which implies max(∠q1Oq′,∠q̃2Oq′) > φ.

In the case that q′ lies on the larger arc connecting q1 and q̃2, it is also clear the smallest
max(∠q1Oq′,∠q̃2Oq′) can be is when q̃2 lies on the boundary of S ′. In this case, it is also
true that max(∠q1Oq′,∠q̃2Oq′) > φ. Thus, to project q1 and q2 to any line that passes
through the origin, we must have that one of ‖e1‖ , ‖e2‖ > sin(φ) ‖q1‖ = R, as desired.

Lemma 14. If a pair (u, v) is representative then both of the eigenvalues of Ãu,v are larger
than Ω

(
1

n1/2+cµ

)
.
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O

C ′

S ′S ′′

q1

Figure 2: q̃2 cannot like on the sectors S ′ and S ′′.

Proof. By Theorem 1.2, the eigenvalues of Ãu,v and Au,v differ by less than 2
n1+µ . Hence it

suffices to show that the eigenvalues of Au,v are larger than Ω
(

1
n1/2+cµ

)
.

We know that Au,v is a gram matrix and hence positive semi-definite. Therefore, we can
write Au,v = κ21w1w

T
1 + κ22w2w

T
2 where 〈w1, w2〉 = 0. Now let M1 be a n × 2 matrix with

columns qu and qv and define M2 = κ1w1w
T
1 +κ2w2w

T
2 . Denote the columns of M2 as q′u,q

′
v.

By the orthogonality of w1 and w2, we have that MT
1 M1 = MT

2 M2. Hence, U = M1M
−1
2

is an orthogonal matrix and the image of q′u is qu and similarly, the image of q′v is qv. If
κ2 < Ω(1/n1/2+cµ), then we can find e′u, e

′
v such that ‖e′u‖ , ‖e′v‖ < κ2 such that M2 plus the

matrix with e′u, e
′
v in its columns is rank 1. Since U is an orthogonal matrix, we can thus

find eu, ev such that ‖eu‖ , ‖ev‖ < κ2 and M1 plus the matrix with columns eu and ev is rank
1. However, this contradicts Lemmas 12 and 13 so we are done.

We finally show that Algorithm 2.1 passes the soundess case.

Lemma 15. If G is ε-far from ε- far from (2, µφ2ε2, cdµ
2φ4ε4)-clusterable then Algorithm

2.1 rejects G with probability greater than 2
3
.

Proof. A trial is rejected if we find a representative pair. Hence, the probability that a trial

is rejected is at least θ2|S1||S2|
n2 (1− η)4 ≥ θ2ε4

64·11522 . Hence, the probability that all trials except
is at most (

1− θ2ε4

64 · 11522

)S
< exp(−2) <

1

3
.

4 Future Work

The authors plan to release a future addition of this paper that gives a full proof of Lemma
9 and presents the analysis of Algorithm 2.1 for all values of k.
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