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Abstract

This expository paper is based on the theory of imaginary geometry, due to
Sheffield and Miller. We aim to explain enough of the theory for the reader to
understand the main constructions and some basic interactions between them in a
short time. We suppress the more technical aspects when possible to focus attention
on building geometric intuition.
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1 Introduction

Gaussian free fields (GFF) and Schramm-Loewner Evolutions (SLE) are fundamental
conformally invariant random objects in probability and statistical physics. In this paper
we give a relatively quick and gentle introduction to the theory of imaginary geometry,
in which SLEs are realized as straight lines in a geometry generated by a Gaussian free
field.

The prerequisites for this paper are solid knowledge of complex analysis (especially
the Riemann mapping theorem), probability (including basics of Ito calculus), and ac-
quaintance with the Schramm-Loewner evolution. Familiarity with Gaussian free field
is recommended, but we hope not strictly necessary. Good references for SLE include
[BN16] and [Wer03], while good references for GFF include [She07] and the first chapter
of [Ber16].

1.1 Initial Overview

Given a smooth function h on a planar domain D ⊆ C, the vector field eih has well-
defined, smooth integral curves. In fact, we may think of these curves as straight lines
at angle 0, with straight lines at a general angle θ the integral curves of ei(h+θ). One
could define a smooth but imaginary analog of a Riemannian geometry in this way; since
directions are globally defined, parallel transport along a closed loop fixes all angles, but
may dilate lengths, in contrast to Riemannian geometry.

However, this paper is concerned not with the above situation, but with the problem
of making sense of these integral curves, or flow lines, in the case that h is a Gaussian
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free field (GFF). A Gaussian free field is a canonically random Schwartz distribution (or
generalized function) on a domain D (always simply-connected for our purposes) which
is invariant under conformal isomorphism. Unfortunately, GFFs cannot be realized as
continuous functions, so it is highly unclear how to make sense of the “vector field” eih.

The flow lines of a GFF turn out to be another type of canonical, conformally in-
variant random object called an Schramm-Loewner evolution (SLE), or more precisely
a variant known as SLEκ(ρ). These are highly non-smooth, and in fact have fractal
dimension strictly between 1 and 2. One can also define counterflow lines which are
slightly different and interact with flow lines in interesting ways. The main power of
the theory comes from the ability to generate multiple flow and counterflow lines from a
single instance h of a GFF.

An essentially degenerate case of imaginary geometry was studied in [SS09, SS13] in
which contour lines or level lines of the GFF are studied; these correspond to sets on
which the GFF is constant, and are also SLE curves. In this setting, it was shown that
the level lines of successively finer discrete approximations to a continuum GFF converge
to the continuum level lines. The analog of this for imaginary geometry is believed (and
assumed in simulations) but has not been proved.

The theory of imaginary geometry was developed in detail, together with applica-
tions, in a series of paper by Miller and Sheffield ([MS12a, MS12b, MS12c, MS13]) . In
particular, [MS12a] develops the theory of flow (and counterflow) lines started from a
boundary point, [MS13] develops the theory for lines starting from interior points, and
[MS12b, MS12c] apply the theory to reversibility of SLE processes. The interactions
between flow (and counterflow) lines are carefully analyzed in a wide range of cases to
great effect. In this paper we only present a subset of [MS12a].

The aim of this paper is to give the curious reader an expedited introduction to the
basics of imaginary geometry. We hope to accomplish this by only outlining the technical
points when they appear, allowing the geometric intuition to shine through. To the reader
who completes this survey, the perhaps strange behavior of flow and counterflow lines
should no longer be quite so mysterious.

1.2 Summary of Results

Although flow lines move monotonically to the right as the angle increases and do not
self-intersect, there are many aspects of smooth differential topology which do not carry
over to flow lines in imaginary geometry.

First, we can and will consider e
ih
χ as the vector field for any fixed χ, adding an extra

degree of freedom. The flow lines look like SLEκ for κ < 4 depending on χ. The level
line case mentioned earlier corresponds to χ = 0, κ = 4.

Flow lines of the same angle started from different boundary points can intersect,
unlike the smooth case in which reversibility of integral curves immediately shows this
is impossible. In fact, once two flow lines intersect, they immediately merge and stay
together for all time.

Additionally, if we flow at angle θ and then at angle θ + π, we do not retrace our
previous path; indeed, this would be inconsistent with the above merging phenomenon.
One might think this would be inconsistent with the previously mentioned conjecture
that flow lines arise as scaling limits of well-behaved, classical flow lines, but this is not
so because flow lines also do not vary continuously in the angle. In fact the set of points
reachable in a straight line from a given boundary point, the SLE fan, has measure 0.
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This interaction becomes more striking when we also consider counterflow lines. It
turns out that given a GFF and κ ∈ (0, 4) such that the flow lines look like SLEκ,
we can also consider counterflow lines which look like SLE 16

κ
. A single (zero-angle)

counterflow line run from b → a contains a whole range of flow lines run from a → b,
namely those at angles θ ∈ [−π

2 ,
π
2 ], and traverses each of them in reverse-order. The left

and right boundaries of the counterflow line are precisely the extremal flow lines in the
aforementioned range.

A single counterflow line actually is strictly larger than the union of the flow lines
contained in it. However, we can reconstruct a counterflow line using angle-varying flow
lines, in which we may change directions provided we are at all times travelling in a
direction θ ∈ [−π

2 ,
π
2 ]; the set of points reachable in such a way is precisely the range

of the counterflow line. In fact, only the extreme angles ±π
2 are needed to generate the

counterflow line.

1.3 Outline

In section 2 we begin by reviewing basics of GFF and SLE, and introducing the slightly
more general SLEκ(ρ) processes which are what flow lines actually are. We discuss nota-
tion for assigning a certain type of boundary value to a GFF along a flow or counterflow
line.

In section 3 we define the flow and counterflow lines. We remark now that the initial
definition of flow and counterflow lines is rather indirect; it is not even clear that the
GFF h determines them uniquely! We also state some useful technical results.

In sections 4 and 5 we explain the interactions between flow and counterflow lines,
and use them to show that flow and counterflow lines are determined by the free field.

Finally, in section 6 we give a brief outline of further aspects.

2 Technical Preliminaries

2.1 Gaussian Free Field

Here we give the definition and basic background on the Gaussian free field. We briefly
review basic notions in Liouville quantum gravity because of the close analogy with
imaginary geometry.

The Gaussian Free Field h on a simply-connected planar domain D is a random
Schwartz distribution or generalized function - recall that this means the pairing (h, f)
is defined for all sufficiently smooth, compactly supported test functions f . We first
define the 0-boundary GFF. To do this, we consider the Dirichlet energy (f, f)∇ of a
compactly supported, smooth function f ∈ C∞c (D). The Dirichlet energy is given by

(f, f)∇ =

∫

x∈D
|∇f(x)|2dx.

This defines an inner product (it actually assigns 0-energy to all constant functions,
but we’ve assumed our functions are compactly supported so this is not an issue). Taking
the Hilbert-space closure of C∞c (D) with this inner product gives the (Hilbert)-Sobolev
space H1

0 (D), roughly consisting of the functions f with gradient in L2(D) and with 0-
boundary conditions. To define the Gaussian Free Field, we take a “canonical Gaussian
random vector” for this Hilbert space H, by writing down an orthonormal basis (xi),
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generating i.i.d. standard Gaussians αi and writing h =
∑
αixi. It is easy to see that for

any fixed x ∈ H, the inner product (x, h) should be a centered Gaussian with variance
|x|2H = |x|2∇. However, there is a caveat: h is not actually an element of H as we would
clearly have |h|H = ∞. Since Hilbert spaces are self-dual, this means that although
(h, f)H exists for each fixed element f ∈ H with probability 1, h almost surely does not
pair with all elements simultaneously. However, we can still realize h as an element of
the larger function space of Schwartz distributions.

One can also define a GFF with prescribed boundary data on D; to do this, one
extends the boundary data to a harmonic function on D and deterministically adds this
function to a 0-boundary GFF. In fact, we can do this for any harmonic function f on D,
regardless of whether D has a nice boundary or if f extends sensibly to that boundary.

One very important property of the GFF is the domain Markov property, which
states that if we condition on the complement U c of a domain U ⊆ D, the law of h|U
is a GFF with boundary data given by the harmonic extension of the boundary values.
This justifies the definition of a GFF with non-zero boundary data. The proof requires
a slightly technical ingredient, elliptic regularity, but is very intuitive.

Proposition 2.1. Let U ⊆ D open be a simply connected domain, and h a 0-boundary
GFF on D. Then we may write h = h0 + φ with h0 a 0-boundary GFF on U and
vanishing outisde U , and φ harmonic. Moreover h0, φ are independent.

Proof. The point is that we have an orthogonal decomposition of Hilbert spaces given by
H1

0 (D) = H1
0 (U)⊕Harm(U), where Harm(U) consists of functions harmonic in U . It is

clear that H1
0 (U) and Harm(U) are disjoint except for 0 and orthogonal (by integrating

by parts). To show they span, suppose f ⊥ H1
0 (U). Then for any φ ∈ C∞0 (U), we have

0 = 〈f, φ〉∇ = −(∆f, φ)L2(U), and so ∆f = 0 on U . Elliptic regularity implies that a
harmonic distribution is actually a C∞ function, and so f ∈ Harm(U) as desired. The
orthogonal decomposition makes the result clear when we recall the construction of h as
a Gaussian random vector, since we can generate h using separate bases for H1

0 (U) and
Harm(U).

Note that elliptic regularity isn’t conceptually essential here; without it, we would
obtain the same result with Harm(U) defined to be the space of distributions harmonic
in U . However, though it won’t be apparent from this paper, it is legitimately useful to
know that the conditional mean of h|U is a bona-fide function.

Though h is not a function, various properties of continuous functions may be ex-
tended to h; in this paper, as outlined before, we will investigate the flow lines of eih/χ.
One may also define the average values of h on circles (which is jointly continuous in
center and radius) and use this to define eγh for each γ ∈ (0, 2), a random measure
known as Liouville quantum gravity. Like the flow lines, Liouville quantum gravity has

a fractal nature; it is supported on a set of dimension 2− γ2

2 .
The “definition” of Liouville quantum gravity above is similar to that of the flow

lines, but LQG is real rather than imaginary. This results in a transformation rule for
GFFs on domains D, D̃ related by a conformal isomorphism; we explain this here due
to the analogous concept for imaginary geometry. Suppose f : D̃ → D is a conformal
isomorphism, h is a GFF on D and µh = eγh is the LQG measure on D. Then it
turns out that the pullback µh̃ of the measure µh to D̃ is given by LQG measure for

h̃ = h ◦ f +Q log |f ′|, for Q = γ
2 + 2

γ . We say that f defines an isomorphism between the
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random surfaces (D,h) and (D̃, h̃) when it preserves the LQG measures; that is, a random
LQG surface is a pair (D,h) for a domain D and distribution h, up to isomorphism given
by the above coordinate change formula. Note that if h were smooth, we would expect
Q = γ

2 . The reason that Q has another term comes from the precise definition of LQG,
in which one approximates eγh via small-ball circle averages; if one directly approximates
h via circle averages, this will blow up badly as the circle radius goes to 0, and so the
definition requires an explicit renormalization that explains the 2

γ term.
In the same vein, the imaginary surfaces we discuss in this paper have an analogous

coordinate change formula which allows us to identify conformally isomorphic domains.
In this case, though, pretending h is smooth actually does give the correct formula. One

can make some intuitive sense of this by arguing that, whatever e
ih
χ means, it should not

blow up and become infinite like eγh might, so there’s no reason that renormalization
would come up. The transformation rule is thus (D,h) → (f−1(D), h ◦ f − χ arg f ′) =
(D̃, h̃); that is, under this transformation rule, flow lines of angle θ in D, D̃ are related
by f . We will say more on this later.

Next, we make a few remarks on GFFs defined on finite graph. Let G = (V,E)
be a finite, simple graph and ∂ a non-empty distinguished set of vertices, which we
view as the boundary. Let D = V \∂. Since

∫
|∇f(x)|2dx = −

∫
f(x)(∆f(x))dx, to

define a GFF it suffices to define a discrete Laplacian for a graph, and this is given
by ∆f(x) = 1

d(x)

∑
x∼y(f(y) − f(x)) for d(x) the degree. This then generates an inner

product on the functions defined on the vertices of the graph, subjected to the constraint
that they vanish on ∂. A (0-boundary) GFF, then, is simply a Gaussian vector in this
finite-dimensional Hilbert space. Explicitly, we have 〈f, f〉∇ =

∑
x∼y |f(x)− f(y)|2, and

so the values f(x) are Gaussians biased to be close to their neighbors. We also retain a
discrete domain Markov property in this discrete situation.

Figure 1: A Simulated Discrete GFF. Notice the roughness which prevents h from being
defined as an honest function.

6



This construction allows one to represent a continuum GFF as a scaling limit of
discrete GFFs on suitable lattices with mesh size decreasing to 0. More precisely, given
a planar graph G with triangular faces, we may identify a function f : G→ R with the
piece-wise linear interpolation of f to the faces of G. The piece-wise linear functions
obtainable this way form a subspace onto which we may orthogonally project a given
continuum GFF; taking finer meshes corresponds to projecting onto larger subspaces.

It is conjectured but has not been proven that the (piecewise smooth) flow lines of
discrete approximations to a continuum GFF h converge to the continuum flow lines.
[SS09, SS13] study what is essentially the degenerate case χ = 0, in which the flow lines
are just “level lines” on which h is “constant.” In this case, convergence of discrete level
lines to continuum level lines is proved, but proving an analogous result for flow lines
has not been done.

As a final remark, GFFs are often defined with free-boundary conditions. In the
discrete case this would amount to ∂ = ∅, while in the continuum case we remove
the compactly supported restriction on our test functions. Since constant functions
have vanishing Dirichlet energy, we view a free-boundary GFF as being defined modulo
additive constant. In practice, one sometimes normalizes a free-boundary GFF to have
mean 0 on a suitable fixed set for convenience. One can also define mixed boundary
conditions which are free on some but not all boundary arcs. In any case, free and
mixed boundary conditions will not be relevant for this paper, and we will make no
further mention of them.

2.2 SLE

Here we briefly review basics on the Schramm-Loewner Evolution (SLEκ) processes, and
discuss the generalized SLEκ(ρ) processes which appear as flow lines. For details on SLE
we recommend the excellent survey [BN16].

Given an open, simply connected Jordan domain D ⊆ C with marked points (a, b) ∈
∂D, the Schramm-Loewner Evolution (SLE) is a R+-parametrized family of random,
non-self-crossing continuous paths γ from a to b. Since SLE is by construction invariant
under conformal coordinate change, we typically take (D, a, b) = (H, 0,∞), where H =
{x+ iy : y > 0} is the upper half-plane. (More precisely, one defines SLE first in H, and
then defines it in an arbitrary domain by conformal invariance.)

To define SLE, one considers not the path γ, but instead an R-parametrized family
of conformal isomorphisms gt : H\γ([0, t]) → H. It is helpful to first consider a simple,
deterministic model which is the degenerate case SLE(0). Let

γ(t) = 2i
√
t.

By the Riemann mapping theorem, for each t there is a unique conformal isomorphism
gt : H\γ([0, t])→ H such that gt(∞) =∞ and ∂zgt(∞) = 1. In fact in this case we have
the exact formula

gt(z) =
√
z2 + 4t.

This means that we have

∂tgt(z) =
2

gt(z)
.
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In other words, for z /∈ γ([0, t]), the function gt(z) is the unique solution to the ODE
∂tgt(z) = 2

gt(z)
with initial condition g0(z) = z, in other words the flow defined by the

vector field U(z) = 2
z . We may now define the set Kt = γ([0, t]) in terms of this flow,

as the set of initial positions z0 such that the flow gt(z0) is not defined as a result of the
flow curve hitting the real line. We note also that, having applied the conformal map
gt, we may view the remainder of this process as taking place in gt(H\γ([0, t])) = H;
in other words, we may forget about the first t time units and start afresh. We might
view this process as repeatedly eating away a small path starting at 0 and applying a
conformal isomorphism back to H sending the tip of the path back to 0.

To define SLEκ, we mimic the above construction, but instead of eating away only
at 0 we eat from a continuously varying point Wt, called the Loewner driving func-
tion. In other words, after eating away each small amount of the upper half-plane and
conformally mapping back to H, we slightly shift the real point at which we eat away
from H. This also corresponds to horizontally translating the vector field U . To express
this rigorously, we modify the ODE from before to incorporate the driving function, thus
obtaining

∂tgt(z) =
2

gt(z)−Wt

for a continuous function Wt with W0 = 0. We then define the sets Kt as before, as
the set of initial points z0 for which gt(z0) cannot be defined. In general, the sets Kt

need not be described by a continuous path γ, but they do form a growth process of
compact sets, and are parametrized by a natural quantity called the half-plane capacity.

The law of an SLEκ curve is given by setting Wt =
√
κBt for a standard Brownian

motion Bt. Rohde and Schramm showed in [RS11] that in this case, Kt is the convex
hull of the image η([0, t]) for a continuous function η, called the SLE trace.

Perhaps surprisingly, the qualitative behavior of η varies dramatically depending on
the value of κ. η is always non-self-crossing, and for κ ≤ 4 it is simple. For κ ∈ (4, 8) it
is non-simple, and for κ ≥ 8 it is space-filling. One can show in all cases that the trace
η(t) is transient, meaning that |η(t)| → ∞ as t ↑ ∞. Beffara showed that the Hausdorff
dimensions satisfy dimH(η([0, t])) = min(1 + κ

8 , 2).

2.3 SLEκ(ρ)

The SLEκ(ρ) processes are variants of SLE with extra force points which affect the drift
of the driving Brownian motion. In the absence of force points, one recovers ordinary
SLEκ. Given a vector

(xL;xR) = (xk,L ≤ xk−1,L ≤ ... ≤ x1,L ≤ 0 ≤ x1,R ≤ ... ≤ xm,R)

of real positions and a vector

ρ = (ρL; ρR) = (ρk,L, ..., ρ1,L, ρ1,R, ..., ρm,R)

of real weights, we define the SLEκ(ρ) process by the systems of stochastic differential
equations

V i,q
t =

∫ t

0

2

V i,q
s −Ws

ds+ xi,q, q ∈ {L,R}
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Wt =
√
κBt +

∑

i,q

∫ t

0

ρi,q

Ws − V i,q
s

ds.

The singularities in the SDEs result in a couple of technical points that we will freely
gloss over, which can be found in full detail in the original paper [MS12a]. An important
consequence of these technical points to keep in mind is that the force points V i,L to
the left of Wt (say) will always stay to the left; upon colliding with Wt, they will bounce
off but never cross over to the other side. Note that one or both of x1,L, x1,R can be 0;
in this case, we think of the force points as starting at 0− and 0+, so that they always
bounce off on the left/right side of Wt.

Away from collisions, Wt is a Brownian motion with bounded drift. By Girsanov’s
theorem and absolute continuity, this fact combined with the corresponding result for
ordinary SLEκ means that on compact time-intervals away from collisions, Kt is gen-
erated by a continuous path. It turns out that SLEκ(ρ) is always continuous, even at
boundary intersections. This results was first proved in full generality using imaginary
geometry in [MS12a], and we will not use it in this paper. We mention it now for the
psychological comfort it may provide.

Theorem 2.2. SLEκ(ρ) is generated by an a.s. continuous curve η, at least up to the
continuation threshold discussed below.

The SDEs above surely look very strange and arbitrary to the reader. We add in
a drift term to the driving function Wt, which is dependent on repelling force points
which themselves drift away from Wt. The point, as will be explained in more detail
later, is that we will view SLEκ(ρ) curves as flow lines for a GFF h with boundary data
which is constant on each interval (xi+1,L, xi,L) or (x`,R, x`+1,R) with values depending
on (ρL; ρR) in a simple way. The drift of the force points is identical to the drift for the
Loewner flow with driving function Wt, so the picture is that of a fixed domain, namely
H with some stationary marked force points on the boundary, with a growing flow line
η([0, t]) = Kt exploring the domain.

2.4 The Continuation Threshold

A technical point we will discuss now is that of the continuation threshold for SLEκ(ρ).
The continuation threshold isn’t essential for this paper due to the restricted cases we
consider, but it is certainly good to be aware of this notion. The story is that while
ordinary SLEκ is defined for all positive real times, SLEκ(ρ) may not be, depending
on the force points and the evolution of the process. The continuation threshold for
SLEκ(ρ) is thus the (possibly infinite) time after which the process stops being defined
(i.e. we cannot continue past this time). Below we outline the situation.

To understand why we might run into trouble in continuing the SLEκ(ρ) SDEs, we
need to think a bit about the SDEs from a technical standpoint. The force points are
defined by the same ODE in Wt, and so away from Wt they will never merge. Conversely,
if multiple force points on the same side of Wt simultaneously collide with Wt, they will
stay together for all time by uniqueness, and we can think of them as having merged
together (but note that the force points drift deterministically away from Wt, so collisions
between opposite-sided force points will never occur at non-zero times). The continuation
threshold comes from the technical problem of making sense of the SDEs near collision
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points. If Wt collides with a single force point V i,q, then |Wt − V i,q
t | will look like a

rescaled Bessel process of dimension δ, i.e. a solution to the SDE

dXt = dBt +
δ − 1

2Xt
dt.

To be precise, we have δ = 1 + 2(ρi,q+2)
κ . (The word “dimension” comes from

the fact that when δ ∈ N, a Bessel process of dimension δ is simply the Euclidean
norm of a Brownian motion in δ dimensions.) Bessel processes are well-understood,
and it turns out that they behave just fine for δ > 1, i.e. for ρ > −2, and so if∑

Force points colliding with Wt
ρi,q > −2 then we can safely continue the process past the

collision. We therefore define the continuation threshold to be the first time at which
this is not the case. This means that the continuation threshold will always happen at
a collision of Wt with a new force point, i.e. a collision with the boundary.

2.5 Boundary Values and Notation

Here we discuss boundary values for GFFs along interior flow lines. In the next section
we will use these ideas to define the flow line coupling. One might expect that this
would be relevant because, as we said before, flow lines result from GFFs with piece-wise
constant boundary conditions. If we stop a flow line at η(τ) and re-interpret our domain
to be D = H\η([0, τ ]), a flow line started from the tip η(τ) at the same angle should
just be the continuation of the original flow line. This means we should be able to say
something about the boundary values of h on η([0, τ ]) so that we can define a flow line
started from η(τ) in a nice way.

We first define an auxillary constant χ for each κ > 0 (though the reason for making
this definition will not be clear until later). We set

χ(κ) =
2√
κ
−
√
κ

2
.

For an interior curve η (smooth for now), we want to consider boundary conditions
on h that change linearly as a function of the winding angle, at least on each piece of η.
In figure 2, we illustrate a convenient notation for expressing this.

In the case that η is non-smooth, it is not completely clear how one would define
boundary values as above. The answer is by describing instead the harmonic extension
to ηc; recall that this is what we really mean when we prescribe boundary values for a

GFF. Now, if η were a simple flow-line of e
i( h
χ
+θ)

for h smooth, with ft the mapping-out
function for η([0, t]), then we would have

h(x) ≈ −θ − χ arg f ′t(z)

for z just to the left side of x ∈ η([0, t]) and

h(x) ≈ −θ + χπ − χ arg f ′t(z)

for z just to the right side, as one can easily see with a little thought.
Since arg f ′t is harmonic (this is just because f ′t is non-vanishing and holomorphic),

it suffices to describe the harmonic extension of the angle-boundary values to ηc. We
can do this canonically by mapping-out by f to reduce to the case of the whole upper
half-plane.
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Figure 2: For imaginary geometry, one constantly works with boundary conditions which
change linearly with the winding angle of the boundary on each of several pieces of
η. Here the different pieces are given by the arcs between adjacent black dots. More
precisely, turning by θ to the left corresponds to an increase in boundary value (on both
sides) by χθ. When we label a straight boundary arc x

:
, we mean that that arc has

boundary value exactly x, and that the rest of that arc-piece is labelled according to
the turning rule as shown. Thus the figures depicted side-by-side represent the same
boundary conditions.

a:

:
b

:
c

d:

f
:

:
e

a

b

c

d

f

e

c+ π
2
χ d+ π

2
χ

c− π
2
χ

e+ π
2
χ

f− π
2
χ

a+ π
2
χ

a
a− π

2
χ

b+ π
2
χ

d+πχ

Continuously
varying

Continuously
varyingb

As a word of caution, imaginary geometry departs from this smooth analogy in
an important way. Namely, the left and right boundary values on a flow line differ by
constants depending on κ from what the above smooth story would suggest. For example,
even in the degenerate case χ = 0, in which flow lines correspond to “level lines” on which
h is “constant,” the boundary values for h differ by a constant amount on the left and
right sides of the level lines ([SS09],[SS13]). Of course, if h were continuous the left and
right boundary values would agree, so this discrepancy can be viewed as accounting for
the “roughness” of h.

3 Foundational Results

3.1 The Coupling

Here we outline the construction of the flow lines which will be interpreted as eih/χ. We
will later show that they are determined a.s. by h, but this takes more work and for now
we only construct couplings of SLEκ(ρ) processes with h. We do this by defining the
conditional law of h given a stopped SLEκ(ρ) by defining the boundary values of h on
the SLE. This gives a valid coupling of h with SLEκ(ρ), and the boundary values can
be interpreted as a justification for our analogy with classical vector fields. We will also
state the martingale characterization for SLEκ(ρ) which allows us to reverse the proof;
this will be useful later because it allows us to show that flow lines in certain domains
are also flow lines in different domains, allowing us to switch between domains.

In the coupling theorem, we use constants λ, λ′ defined as follows:

λ = λ(κ) :=
π√
κ
,

11



λ′ = λ(κ′) = λ

(
16

κ

)
=
π
√
κ

4
.

The identity

λ′ = λ− πχ

2

will sometimes be useful.
We remark that the relationship between κ, χ, λ, λ′ is designed precisely for the the-

orem below to work. Though we do not actually work through the computation here,
we explain the condition one needs to check.

Theorem 3.1. Fix κ > 0 and a vector (ρL; ρR). Let Kt be the hull generated by the
SLEκ(ρ) process for the parameters above, and let h0t : H→ R be the harmonic function
with boundary values

−λ
(

1 +

j∑

i=0

ρi,L

)
if s ∈ [V j+1,L

t , V j,L
t ),

λ

(
1 +

j∑

i=0

ρi,R

)
if s ∈ [V j,R

t , V j+1,R
t ),

Here (for convenience of notation in the boundary formulas above) we assume ρ0,L =
ρ0,R = 0, x0,L = 0−, x0,R = 0+, xk+1,L = −∞, x`+1,R = +∞.

Now with χ = 2√
κ
−
√
κ
2 , let

ht(z) = h0t (ft(z))− χ arg f ′t(z).

Let (Ft) be the filtration generated by the SLEκ(ρ) processes (W,V i,q). Then there
exists a coupling (K,h) for h = h̃ + h0 and h̃ a zero boundary GFF on H such that for
any stopping time τ , the conditional law of h|H\Kτ given Fτ is the law of hτ + h̃ ◦ fτ .

Remark. In the statement of the coupling theorem, we assume that h has piece-wise
constant boundary conditions. One can easily extend this to general boundary conditions
which are constant in a neighborhood of the initial point 0, so long as η stays away from
non-piecewise-constant boundary spots. This is essentially because behavior of a GFF
on separated sets A,B is mutually absolutely continuous with respect to the product
measure; we say h|A, h|B are almost independent. We won’t use non-piecewise-constant
boundary conditions in this paper, however.

Before discussing the proof of theorem 3.1, let’s unpack what this (fundamental)
theorem says. As mentioned before, we will construct flow (or counterflow) lines such
that h has nicely described boundary conditions on the flow line η([0, τ ]); this theorem
asserts that we can define a coupling of flow lines with a GFF h so that this actually
holds. As stated in Theorem 3.2, the desired boundary conditions given a flow line are
enough information to uniquely determine the joint law for the coupling. In the later
sections, among other things, we will show that η is actually determined by h.

12



Figure 3: The function h0τ in Theorem 3.1 is the harmonic extension of the boundary
values on the right panel. The function hτ = h0τ ◦ fτ −χ arg f ′τ is the harmonic extension
on the left side. That the vertical boundary values on the left side are ±λ′ follows from
the identity λ′ = λ− πχ

2 .

x1,L x1,R

−λ λ λ(1 + ρ1,R)−λ(1 + ρ1,L)

fτ (x
1,R)fτ (x

1,L)

fτ

η([0, τ ])

00 fτ (0
−) fτ (0

+)

−λ λ λ(1 + ρ1,R)−λ(1 + ρ1,L) −λ λ

::
λ′

::::
−λ′

Proof. We only give an outline, explaining the key idea which is intuitive and rather
pretty. Fix a function F ∈ C∞0 (H) and assume that Kτ does not intersect the support of
F . For the boundary conditions prescribed, the law of (h, F ) is a Gaussian with mean and
variance µ(F ), σ2(F ), and knowing the (one dimensional) law for each of these Gaussians
uniquely determines the law of h. Now h0 is the conditional expectation of h, so

(h0, F ) = E[(h, F )].

As t increases up to τ , it turns out that (ht, F ) evolves as a time-changed Brownian
motion, and we can describe explicitly the quadratic variation, i.e. the rate of passage
of Brownian time. This means that hτ (ft(z)) is a Gaussian with some variance. Since
h̃ is chosen independently, for h to agree in law with hτ + h̃ ◦ fτ , what we want is for
(h̃ ◦ fτ , F ) to be another Gaussian with complementary variance, so that we recover the
correct law when paired with F .

In fact, the above is exactly what happens. Verifying all of this is a tedious but
routine computation in Ito calculus which we won’t carry out here. Making the numbers
work in this argument is the reason for the strange looking boundary conditions and
constants in the theorem.

There is a bit more work to be done to show such a coupling actually exists, and we
won’t go through it in detail; the above argument can be thought of as checking the main
consistency condition. A summary is that one first finds a coupling that works for a given
finite collection of stopping times, and then uses some abstract nonsense (in the form
of Prohorov’s theorem) to find a coupling that works for a given countable collection
of stopping times. This countable collection can be taken to be dense, which suffices
to give an arbitrary stopping time by approximating from above and using backwards-
martingale convergence.
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We now can define flow and counterflow lines. Note the differing sign conventions;
the reason for this is that χ(κ) = −χ(16κ ), so the sign convention below allows us to
naturally couple κ-flow lines with κ′-counter flow lines. See the next section for more on
this point.

Definition 1. For κ ∈ (0, 4) we define a flow line η of h (at angle 0) to be an SLEκ(ρ)
curve coupled with h as in Theorem 3.1. We define a flow line of angle θ to be a flow
line of h+ χθ.

For κ′ ∈ (4,∞) we define a counterflow line η′ of h (at angle 0) to be an SLEκ′(ρ)
curve coupled with the negation −h as in Theorem 3.1. We define a counterflow line of
angle θ to be a counterflow line of h+ χθ.

Remark. As a technical point, note that the ambiguity in the choice of branch for
the arg function means that if we change θ by 2π, we can get the same flow line by
deterministically shifting arg f ′t . In practice this ambiguity will not be an issue because
diagrams will be labelled with a precise boundary value on at least one boundary arc,
so the normalization of arg will be implicit in the diagram.

Remark. How do we deal simultaneously with multiple flow lines? Once we show that
flow lines are determined by h this will be a non-issue, but since flow lines are only
constructed as a coupling for now the correct a priori definition might not be so clear.
Figuring this out now is actually important, because we’ll need to use flow/counterflow
interactions to show that flow lines are determined by h.

The solution is to use a canonical way to combine multiple couplings with a fixed
object (in this case h) by making the flow lines conditionally independent given h. That
is, to sample multiple flow lines, we first sample h and then independently sample the
flow lines from the conditional law given h. This convention is useful primarily due to
local set results which we only mention in the epilogue, so don’t worry about it too much
for now.

3.2 Imaginary Random Surfaces

Here we expand on the point in the previous subsection on naturally coupling flow and
counterflow lines together.

The coupling theorem motivates the notion of an imaginary random surface. Just
as a Riemannian manifold (say) is a surface with a metric structure up to isomorphism,
an imaginary random surface consists of a planar D together with a Schwartz distribution
h on it, up to isomorphism. The equivalence relation is given by the coordinate change
formula

(D,h)→ (ψ−1(D), h ◦ ψ − χ argψ′) = (D̃, h̃).

Note that we implicitly fix χ here, so we really have a parameterized notion of χ-
random surface for each χ value. The reader will note also that, by the chain rule, the
coordinate change formula given above is functorial as one would hope; given f : D → D′

and f ′ : D′ → D′′, changing by f and f ′ separately or simultaneously give the same result.
The point here is that, as alluded to previously, SLEκ(ρ) processes satisfy the same

conformal Markov property as SLE (so long as we account for the force points). Hence,
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Figure 4: To extend the conformal Markov property for SLEκ(ρ) to the coupling with
h, we must change the boundary data of h to account for the winding of fτ . This leads
to the notion of an imaginary random surface up to conformal equivalence.

h̃ = h ◦ ψ − χ argψ′

D̃

h

ψ

when we stop a flow line η at η(τ) and ask what it will do next, this is equivalent to
beginning a flow line at η(τ) from scratch by viewing η([0, τ ]) as part of the boundary.
That is, by taking the conformal isomorphism ft from H\Kt to H that preserves ∞ and
takes η(τ) → 0 we should be able to define the continued flow lines starting from η(τ).
At the level of the SLEκ(ρ) SDE, this is equivalent to stopping the SDE at some time
and then pretending the state at that time is the initial condition.

Since we don’t create any new force points as the SDE evolves, theorem 3.1 tells
us what the mapped-out boundary data should be for the boundary segments of ∂H
corresponding to η(τ), namely ±λ. The conditional expectation formula

ht(z) = h0t (ft(z))− χ arg f ′t(z)

from Theorem 3.1 now leads to the imaginary random surface coordinate change
formula so that the coupling (h, η) is jointly conformally invariant.

As mentioned previously, for counterflows with κ′ > 4 we always implicitly negate the
sign of the GFF h. Because χ(κ) = −χ(κ′), this means that the values of χ corresponding
to κ, κ′ (counter)flow lines agree. Hence, the same “up to isomorphism” notion of a
random surface transforms both the dual flow and counterflow lines functorially, so that
we may sensibly couple them together on the same imaginary random surface (up to
isomorphism). As we will soon see, a great deal of the power of imaginary geometry
comes from exploiting this interaction.

3.3 Martingale Characterization of SLEκ(ρ)

In proving the coupling theorem 3.1, the key fact was that ht(z) was a continuous local
martingale; this allowed us to parametrize inner products with test functions by Brow-
nian motions. The martingale characterization of SLEκ(ρ) asserts that this property
characterizes SLEκ(ρ), and is useful for technical reasons.

Theorem 3.2. Suppose η is a random, continuous curve in H with continuous Loewner
driving function Wt. For given xi,q, ρi,q and with V i,q

t the images of the force points xi,q

under the Loewner maps, let ht be the harmonic function defined as in the statement of
Theorem 3.1. Then Wt, V

i,q
t evolve as an SLEκ(ρ) process iff ht(z) is a continuous local

martingale in t for each fixed z ∈ H until z is absorbed by Kt.
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The proof is a bit technical and we don’t discuss it. We do emphasize that it must
be assumed that Wt is continuous. The main use of this theorem is that it allows us to
relate flow lines in overlapping domains.

3.4 Flow Lines given Flow Lines are Flow Lines

The following result provides a logical foundation for the intuitive, geometric arguments
of the next two sections. To make it completely rigorous one needs some results on local
sets of the Gaussian free field, so we advise the reader not to worry too much about the
details for now. This sort of result is true in more generality - see the epilogue for some
commentary.

Theorem 3.3. Let a, b ∈ ∂H be distinct boundary points and consider flow or counter-
flow lines ηa, ηb started at a, b. Suppose ηa([0, τa]) a.s. does not accumulate at b, and
Kτa the hull generated. Then ηb evolves as a (counter)flow line in Hτa = H\Kτa with
(counter)flow line boundary conditions on η([0, τa]) and the original boundary conditions
on ∂H, at least until ηb hits ηa or ∂H.

Proof. It’s easy to see that ηb has continuous Loewner driving function in Hτa . Further-
more, given ηb([0, τb]), it is true that the conditional law of h on the remaining domain
is given by a GFF with separate flow line boundary conditions on ηa, ηb (this is actually
non-obvious without the machinery of local sets, and relies on the fact that ηa, ηb are
separated by a positive distance and are coupled to be conditionally independent). So
we know that

1. h|Hτa has conditional law a GFF with flow line boundary conditions.

2. ηb has a continuous driving function.

3. Given ηb([0, τb]), h has conditional law given by combining the flow line boundary
conditions so long as ηb has not yet hit the boundary.

4. The conditional expectation of h|Hτa given ηb([0, t]) is a continuous local martingale
(essentially by definition a conditional expectation with respect to a filtration is a
local martingale, and continuity is not hard to see).

The martingale characterization of SLEκ(ρ) now implies that the conditional law of
(hHτa , ηb([0, τb]) given Kτa is precisely that of a flow line in Hτa .

4 Flow and Counterflow Interactions 1

In this section and the next, we derive some properties of flow/counterflow lines in the
case that the flow lines are not boundary intersecting. The results of this section are
best stated on a strip S = R × [0, 1]; we identify S ∼ H via a conformal isomorphism
ψ : S → H with ψ((0, 0)) = 0, ψ(+∞) = ∞, ψ(−∞) = −1. We denote the upper and
lower boundaries R× {0},R× {1} by ∂US, ∂LS, respectively. We will repeatedly invoke
continuity of the flow and counterflow lines, and we remark that this is not circular
because in all cases considered here, because the SLEκ(ρ) processes avoid the boundary
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and hence are absolutely continuous with respect to ordinary SLEκ on compact time
intervals.

As in figure 5, a putting a single force point of weight ρ at −1 ∈ ∂H corresponds
to constant boundary data a = −(1 + ρ)λ − πχ, as follows from the imaginary random
surface transformation rule.

Figure 5: For convenience, we identify S ∼ H via the conformal map ψ−1 : H →
S depicted here, which sends (0,−1,∞) → (0,−∞,+∞) and changes boundary data
according to the transformation rule.

−λ λ−(1 + ρ)λ −λ λ

a = −(1 + ρ)λ− πχ

::::
−λ′

::
λ′

::
λ′

::::
−λ′

ψ(η)

η

ψ−1

0−1 0

4.1 Boundary Value Lemmas

We will make heavy use of some lemmas which are essentially due to Dubédat in [Dub07]
where a precise analysis of the SLEκ(ρ) SDE is undertaken. We will implicitly use
Theorem 3.3 to apply these lemmas after conditioning on a flow line; the recipe for the
proofs will be to condition on a flow or counterflow line η1([0, τ1]), use a conformal map
to make η1 part of the boundary of S, and apply one of the lemmas below to another
flow or counterflow η2 to glean information on the interaction of η1, η2. We encourage
the reader not to worry to much about the precise boundary value calculations.

Figure 6: The boundary-hitting behavior of an SLEκ(ρ) flow line can be precisely deter-
mined in the special case depicted here by the boundary values. Depending on whether
a ≥ λ, a ∈ (−λ, λ), or a ≤ −λ, the flow line accumulates first at −∞, ∂US, or +∞.

−λ

a

−λ < a < λ

::::
−λ′

::
λ′

::::
−λ′

::
λ′

::::
−λ′

::
λ′

0

a ≥ λ a ≤ −λ
λ
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Lemma 4.1. Suppose that h is a GFF on S with boundary data as depicted in Figure 6
and let η be the flow line of h starting from 0. If a ≥ λ, then η a.s. accumulates at −∞
and if a ≤ −λ then η a.s. accumulates at +∞. In both cases, η a.s. does not intersect
∂US. If, on the other hand, a ∈ (−λ, λ), then η a.s. accumulates in ∂US.

The case a ≥ λ holds more generally if the boundary data is piece-wise constant with
all values at least λ with finitely many changes, and similarly for the a ≤ λ case.

Finally, the analogous statements hold for counterflow lines SLEκ′(ρ
′) with λ replaced

by λ′.

Lemma 4.2. Suppose a GFF h on S has boundary data as depicted in Figure 7 with
a ≤ −λ, c ∈ (−λ, λ), b ≥ λ. Then a flow line started from 0 a.s. first accumulates in the
interval (z0, z1).

Similarly, in Figure 8 with boundary data as indicated, a flow line started from 0 a.s.
first accumulates at z0.

Figure 7: When the upper boundary has boundary data as shown in this diagram, the
flow line will almost surely first accumulate on the boundary in the interval (z0, z1). This
is intuitive given the previous figure because the outside upper boundaries should push
η toward the middle.

−λ λ

a ≤ −λ b ≥ λ−λ < c < λ

::::
−λ′

::
λ′

0

z0 z1

Figure 8: In this figure, we dispense with the middle intermediate boundary segment
from the previous figure and only have very large and very small boundary data. In this
case, the flow line will almost surely accumulate first exactly at z0.

−λ λ

a ≤ −λ b ≥ λ

::::
−λ′

::
λ′

0

z0

These lemmas are not hard to guess given the theory of Bessel processes. As explained
earlier, when Wt is close to a force point V i,q, the distance between them is essentially a
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Bessel process, and for such processes it is known for which parameters it is possible to
hit zero, i.e. for collisions to occur. Some easy arithmetic is all that is needed to translate
this information into the present situation. However, the full proof is rather technical,
because a first-hitting of a boundary interval corresponds to a merging of multiple force
points, so the Bessel intuition is not obviously valid. We will take the lemmas on faith.

4.2 Basic Interactions

Finally we can prove some neat results on flow lines. We begin by showing that coun-
terflow lines η′ contain a whole range of flow lines.

Theorem 4.3. As in Figure 8, fix κ ∈ (0, 4) let η = ηθ be the flow line at angle
θ ∈ [−π

2 ,
π
2 ] for h started at 0, and η′ a conditionally independent counterflow line for h

started at z0. Let τ be a stopping time for η. Then η′ a.s. first hits ∂LS ∪ η([0, τ ]) at the
tip η(τ). In particular, η′ contains η and traverses it in reverse order; that is, for s < t,
η′ first hits η(t) before η(s).

Proof. By Theorem 3.3, the conditional law of η′ given η([0, τ ]) is a counterflow in the
domain S\η([0, τ ]) with flow line boundary conditions on η, at least assuming η has not
yet accumulated at the boundary. Mapping η([0, τ ]) to a boundary segment reduces this
to an application of lemma 4.2.

To show the last result for all positive reals (s, t) it suffices to invoke continuity.

Figure 9: When we stop a flow line η = ηθ for θ ∈ [−π
2 ,

π
2 ] at η(τ), a conditionally

independent counterflow line η′ of h− π
2χ first meets ∂LS∪η([0, τ ]) at η(τ) by lemma 4.2.

This implies that η′ contains all of η and traverses η in reverse chronological order. Here
we depict the case θ = −π

2 . In this case, mapping out the right side of η to the boundary
gives a boundary value of λ−πχ+ πχ

2 = λ′ by the transformation rule, so that lemma 4.2
barely guarantees that η′ hits η([0, τ ]) first at η(τ). Symmetrically, in the case θ = π

2 ,
the left side barely works. This means that lemma 4.2 applies to all θ ∈ [−π

2 ,
π
2 ].

−λ− π
2χ λ− π

2χ

::
λ′

−λ′
z0

:::
−λ′

λ′
:::
−λ :

λ

λ−πχ
:::::::

−λ
η

η′

We now show that the left and right boundaries of η′ are simply the extremal flow lines
ηπ

2
and η−π

2
, respectively. As a sanity check, one easily sees that the left boundary of ηπ

2

has the same left-boundary conditions as η′ and similarly for the other side. Nevertheless
this result is still rather striking.
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Theorem 4.4. Fix κ ∈ (0, 4) and let h be a GFF on S with boundary data as in Figure 9.
Let η = ηπ

2
be a flow line of h started at 0 at angle π

2 , and η′ a conditionally independent
counterflow line of h started at z0, at angle 0. Almost surely, η is the left boundary of
η′. Similarly, η−π

2
is almost surely the right boundary of η′.

Figure 10: In Theorem 4.4, we show that the left boundary of a counterflow line η′ is
almost surely a flow line η at angle π

2 . It suffices to show that η′ is never strictly to the
left of η. Using our standard lemmas, one shows that for any stopping time τ ′ for η′, the
flow line η must first hit η′([0, τ ′]) on the left side of the boundary. Topology now shows
that for η′(τ ′) to be on the left side of η, the flow line η must wrap under and around
η′(τ ′) before hitting the right side of the counterflow. But this means that at time τ ′,
the set of t such that η′ has hit η(t) is not an upward-closed interval, contradicting our
earlier result.

−a b

−a′ b′
:::
−λ

λ′ − θχ
:::::::

−λ′ − θχ
:::::::::

η′

ηθ :
λ

z0

Proof. We just do the left-side case. We already know that η is contained in η′, so it
suffices to show that η′ is never strictly to the left of η.

Let τ ′ be a stopping time for η′. We will show η′(τ ′) is on or to the right of η. Indeed,
suppose not, and fix η′([0, τ ′]). An application of lemma 4.2 above shows that η first hits
∂US ∪ η′([0, τ ′]) either to the left of z0 in ∂US or on the left side of η′([0, τ ′]). In the first
case we are done. In the second case, for η′(τ ′) to be to the left of η, the curve η must
wrap underneath and around η′(τ ′) and then hit η′ on the right side as in Figure 10.
But this means that the order-reversing traversal property cannot hold, since η′([0, τ ′])
has now hit two different points on η without having hit the points in between. We are
done.

We can use these ideas to prove a result on monotonicity of flow lines.

Remark. Starting with the next two corollaries, we will begin to suppress the precise
hypotheses on the boundary data in the statements of results. The book-keeping would
become distracting otherwise for no tangible gain, and we feel that the previous results
already give a clear enough idea of how lemmas 4.1 and 4.2 are applied. The reader may
assure him/herself that assuming very negative boundary conditions on the left side of
∂S and very positive conditions on the right side of ∂S would suffice for all subsequent
results.
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As a tacit reminder that we are doing this, for the remainder we will simply hypoth-
esize a “good setup” to mean that we work in S with flow lines 0→ z0 and counterflows
z0 → 0 with boundary data satisfying some appropriate hypotheses.

Corollary 4.5. Suppose that h is a GFF on S in a good setup. Suppose θ1 < θ2.
Let ηθi be the flow line of h + θiχ starting from 0, stopped when it accumulates in

∂US. Then a.s., ηθ2 lies on or to the left of ηθ1.

Proof. Consider a counterflow line η′ with left boundary ηθ2 . Since η′ contains ηθ for all
θ ∈ [θ2 − π, θ2], this shows the result for θ2 − θ1 ≤ π. If the difference is greater than π,
simply repeat the argument inductively with flow lines ηθ2−kπ for integers k.

Corollary 4.6. On a good setup, the flow line η is determined by h.

Proof. Take a counterflow line η′ with left boundary flow line η. Recall that η′, η were
implicitly coupled to be conditionally independent throughout this section; this means
that η has the same conditional law given h and given (h, η′). Since η is determined by
η′, it must be determined by (h, η′) and hence by h alone.

5 Counterflow = Lightcone

Here we give another striking result, proving that counterflows are equal to lightcones of
the flow lines. This implies that counterflow lines η′ are determined by h.

We introduce angle-varying flow lines, which are the imaginary geometric analogs
of polygonal line segments. The idea for the definition is that at the tip of a flow line
η(τ), we may start a new flow line at a different angle by interpreting η([0, τ ]) as part of
the boundary of a new domain, and in fact we may iterate this construction any finite
number of times.

Definition 2. Fix angles (θ1, ..., θ`). Let τ1 be a stopping time for ηθ1 . After stopping
at ηθ1(τ1), let ητ1,τ2θ1,θ2

be the flow line at angle θ2 started at ηθ1(τ1), and stopped at a
stopping time τ2. Inductively, define

η
τ1,...,τj
θ1,...,θj

by starting at the tip of
η
τ1,...,τj−1

θ1,...,θj−1

and starting a flow line of angle θj at the tip. We call ητ1,...,τ`θ1,...,θ`
the angle-varying

flow line with angles (θi) with respect to the stopping times (τi).

We now define the light-cone L of points reachable from 0 with angles in the range
[−π

2 ,
π
2 ], and more generally the light-cones at the tip of any angle-varying flow line to

be the set of points reachable from that tip. Because we don’t have a simultaneous
definition of all the flow lines, we cannot reason about an uncountable number of angles
simultaneously. However, we can easily circumvent this technical hurdle by working with
a countable dense set of angles and stopping times and taking L to be the closure of the
resulting set.
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Definition 3. The light cone L of h started at 0 is the closure of the union of all
angle-varying flow lines with rational angles θ ∈ [−π

2 ,
π
2 ] with all angle-changes time

rational.
Similarly, for any angle-varying flow line ησ1,...,σkφ1,...,φk

, the light cone L(ησ1,...,σkφ1,..,φk
) is the

closure of the set of points reachable bu angle-varying flow lines starting at the tip of
ησ1,...,σkφ1,...,φk

with angles in [−π
2 ,

π
2 ] and all stopping times rational.

Remark. It is not difficult to show that the light cones are independent of the countable
dense set of angles used (above we took the rationals). This is because if θi → θ are
deterministic angles, then we almost surely have convergence of the flow lines ηθi →
ηθ (in, say, the Hausdorff topology). However (see the epilogue section on the SLE
fan) we caution the reader that the flow lines do NOT in any deterministic sense vary
continuously in the angle for a fixed GFF h.

The results on ordinary flow lines extend to angle-varying flow lines, which we record
here.

Proposition 5.1. If θi ∈ [−π
2 ,

π
2 ], then any angle-varying flow line on a good setup with

angles (θi) is simple and continuous, at least until hitting ∂S, and is traversed in reverse
order by η′ and a.s. determined by h.

Proof. The first claim is proved by induction on the number of straight parts in the
angle-varying flow line using lemma 4.1 as usual to show that no self-intersections occur.
The second and third claims are also easy inductions.

Theorem 5.2. Let ησ1,...,σkφ1,...,φk
be an angle-varying flow line of h with angles φi ∈ [φ0, φ0+π]

on a good setup. Then the light cone L(ησ1,...,σkφ1,...,φk
) of points reachable from the tip with

angles in [−π
2 ,

π
2 ] almost surely coincides with the range of the counterflow η′ of h started

at z0, stopping at the first hitting time for ησ1,...,σkφ1,...,φk
. In fact, this is true even if we only

allow the extreme angles ±π
2 in the lightcone.

Proof. We only give an outline of the proof. It suffices to show that angle-varying flow
lines approach η′(τ ′) for any stopping time τ ′ such that η′([0, τ ′]) has not yet hit ησ1,...,σkφ1,...,φk

.

We can conformally map ησ1,...,σkφ1,...,φk
away to the boundary, essentially reducing this to the

case of L. We only consider this case for notational simplicity.
The idea is to initially go straight at angle π

2 until nearly hitting η′([0, τ ′]) (say, until
reaching within distance ε), and then repeatedly change direction by negating the angle
after nearly hitting the opposite side. This generates an angle-varying flow line ητ1,...,τ`θ1,θ2,...,θ`

with θj = (−1)j+1 π
2 . This is depicted in Figure 11.

The same arguments as in the previous section show that the segments at angle π
2

can only approach the left boundary, while the segments at angle −π
2 can only approach

the right boundary. This means that the angle-varying flow line will go back-and-forth
between the left and right boundaries of η′([0, τ ′]), and we need to show that we can
actually approach the tip η′(τ ′) in this way.

We conformally map away the hull Kτ ′ generated by the counterflow up to time τ ′,
sending η′(τ ′) → ∞, 0 → 0. We are now reduced to the case of an angle-varying flow
line oscillating back and forth between the left and right sides of the boundary, as in
Figure 12. The point is to show that this angle-varying flow line (depicted at η̃3) is not
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contained in a bounded region after iterating this back-and-forth algorithm infinitely
many times; this means that η̃3 accumulates at ∞.

To show this, it suffices to show that η̃3 has unbounded half-plane capacity, i.e. that
the defining SDE runs for infinite time (recall that SLEκ is parametrized by half-plane
capacity; the same is true for η̃3 by absolute continuity, since it never actually hits the
boundary). To show this, the idea is to check that the SLEκ(ρ) SDE for each left-right
iteration of the algorithm looks approximately identical. Indeed, one ends up obtaining
an SDE with a single nearby force point together with many far-away force points which
alternate in both sign and position. This means that the SDE is determined up to some
minor changes such as a bounded drift term, and one can show from this that the time
taken to complete a single left-right iteration of the algorithm is uniformly stochastically
bounded from below by a nontrivial, a.s. positive random variable. This immediately
implies that the time, hence half-plane capacity, of η̃3 goes to infinity as desired.

Figure 11: To prove that η′(τ ′) is in the light-cone L, we go back-and-forth at angles
±π

2 , changing direction once we approach the boundary of η′([0, τ ′]).

−a b

b′−a′
z0

Figure 12: After conformally mapping η′([0, τ ′]) to the boundary so that η′(τ ′) is sent
to infinity, it suffices to show that the angle-varying flow line η̃3 has infinite half-plane
capacity, since this implies that it is not contained in any bounded region. To do this,
we show that each left-right iteration looks approximately the same on the SDE level,
so that the amount of half-plane capacity parametrized time taken must go to infinity.

−a b−a′+πχ b′+πχ−λ′+πχ λ′−πχ

η̃3

Corollary 5.3. The counterflow line η′ is determined almost surely by h on a good setup.

Proof. It is now immediate that the trace of η′ is determined as a compact set from the
angle-varying flow lines, and hence from h, and we can show with only slightly more
work that the curve η′ itself is determined. Indeed, we can fill η′ with a countable dense
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set of points on our angle-varying flow lines, which are totally ordered by their η′-hitting
times. By continuity this totally orders all the points of the lightcone by first-hitting
time, and since η′ is parametrized deterministically by halfplane-capacity (after applying
an appropriate conformal isomorphism), this shows that η′ is uniquely determined by h.

Figure 13: Here we depict a counterflow line being filled by back-and-forth movement
along angle-varying flow lines, as in Theorem 5.2. The first figure shows a partial filling
of the counterflow line in which only a single angle-change is allowed, while in the second,
limiting figure the counterflow line is filled.

6 Epilogue

Here we give brief overviews of other aspects of imaginary geometry. We begin with
some technical points we de-emphasized in the bulk of this paper and outline how they
are used. We then discuss some other important topics. We will be more free here in
making arguments which need more technical justification but should be intuitive and
believable.

6.1 Local Sets of the Gaussian Free Field

A local set A of a GFF h on a domain D is a coupling (h,A) of a GFF with a closed set
∂D ⊆ A ⊆ D such that conditioned on the harmonic extension of h|A to Ac, knowledge of
the set A itself gives no more information about h|Ac . Locality has a couple of other useful
characterizations; for example, A is local iff for any (deterministic) open set U ⊆ D, the
conditional probability given h that A ⊆ U c depends only on the projection of h onto
Harm(U).

Flow and counterflow lines are easily seen to be local from the conditional law of h in
the coupling construction, and various properties of local sets turn out to be quite useful
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in the study of imaginary geometry. For example, conditionally independent unions of
local sets are local, which was implicitly used in the proof of Theorem 3.3. We have
already used a couple of technical results which rely on locality of flow and counterflow
lines, and we will illustrate a few more uses below.

6.2 Counterflow Determines Flow Lines for κ ∈ (2, 4)

One application of local sets comes in showing that for κ ∈ (2, 4), the counterflow path
η′ determines all the flow lines ηθ which are contained inside it. The proof goes in the
following steps, which are justified using local set results:

1. Since the range A of η′ has Minkowski dimension 1 + κ′

8 < 2, h|Ac determines h
almost surely.

2. Hence, the law of h given η′ does not change if we condition further on h|η′ , meaning
the intersection of the σ-algebras generated by h|U over all U containing A.

3. Since ηθ is local and contained in A, conditioning on ηθ does nothing if we have
already conditioned on h|η′ .

4. Therefore, conditioning further on η′ gives no more information about h if we have
already conditioned on η. This implies that η′ determines η.

In fact the same argument shows that η′ determines all of the angle-restricted light-
cones that it contains, i.e. the light-cones generated by a subinterval [θ1, θ2] ⊆ [−π

2 ,
π
2 ]

of angles.

6.3 Conditional Laws for Multiple Flow Lines

We can show that boundary conditions given multiple flow lines are what you would
expect, namely one just takes the boundary conditions for each flow line and combines
them. Slightly technical GFF results show that this holds away from the intersections,
using absolute continuity of GFF on separated sets. To show nothing weird happens at
the intersections, it suffices to show there is no “jump” in the conditional expectation of
(h, f) when intersections happen, for test functions f with support not intersecting the
flow lines. This is fine because this conditional expectation is a time-changed Brownian
motion, hence continuous.

Given some flow lines, we want to show that flow lines in between can be viewed
as flow lines in the restricted domain (with flow line boundary values). This follows
from the martingale characterization, but we first must establish that the intermediate
flow line has a continuous Loewner driving function. This is actually quite simple; we
essentially just need to know that no “tunnelling” happens, i.e. that the flow lines do
not overlap for positive time-intervals. This is true because if tunnelling happened, the
boundary values for h on the overlap would have two different values, and this turns out
to be impossible.

With this fact in hand, one can use the martingale characterization to establish that,
conditional on a flow line on the right side, a new flow line is just a flow line in the
left-hand component, and similarly for flow lines between two other flow lines as explain
in Figure 14.
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Figure 14: Conditioned on flow lines ηθ1 , ηθ2 , the law of a flow line η between them is
that of an independent flow line in each component in between, with boundary conditions
coming from ηθi .
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While interesting in itself, this idea of embedding flow lines between each other is
also important for extending the interaction results we proved earlier to domains with
arbitrary boundary conditions. For example, because with appropriate boundary values
a, b as in Figure 14 we know that η is boundary-avoiding and hence continuous, we
immediately conclude that any flow line is continuous when the only force points are at
0−, 0+ since any such setup can be realized as a connected component between ηθ1 , ηθ2
and ψ is a homeomorphism.

6.4 The SLE Fan

The SLE fan is the closure of the union of flow lines in an imaginary geometry started
from a given boundary point, with angles ranging over a countable dense set. As with
the light cones, a countable dense set is needed since we can only work simultaneously
with countably many flow lines, but it is again independent of the choice of countable
dense set.

Figure 15: Unlike in a classical geometry, the fan of points accessible from a given
boundary point via straight lines always has measure 0 in imaginary geometry.

For κ ∈ (2, 4) we know that the SLE fan is contained in the lightcone, hence has
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dimension at most 1 + κ′

8 = 1 + 2
κ < 2, meaning that almost every point is not in the

fan. In fact, the dimension of the SLE fan is 1 + κ
8 , the same as that of a single flow line.

A consequence of the sparcity of the fan is that flow lines must vary discontinuously in
the angle; any sensible sort of continuous variation would have to sweep out every point
in between the extreme flow lines.
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